화학공학소재연구정보센터
Macromolecular Research, Vol.27, No.6, 534-542, June, 2019
Synthesis and Properties of Benzodithiophene-Based Donor-Acceptor Metallo-Supramolecular Polymers
E-mail:,
Two new conjugated donor-acceptor (D-A) supramolecular building blocks, which contain benzo[1,2-b:4,5-b′]dithiophene (BDT) electron-donating cores modified with alkoxy (BDT-OR) or thiophene (BDT-Th) groups and electron-accepting 2,2′:6′,2″-terpyridine moieties, were synthesized via Pd-catalyzed Stille coupling. Under the introduction of transition metal ion Ru2+, the novel metallo-supramolecular polymers PBDT-OR and PBDT-Th were obtained by self-assembly polymerization of the monomeric building blocks BDT-OR and BDT-Th, respectively. The resulting polymers exhibitbroad absorption band from 300 to 600 nm. The embedding of the transition metal ions Ru2+ into the backbones of the supramolecular polymers increases the electron-withdrawing capacity of the terpyridine moieties. Consequently, the absorption bands of both PBDT-OR and PBDT-Th exhibit red-shift at the longer wavelength compared with the corresponding monomeric building blocks, 622 nm for PBDT-OR and 625 nm for PBDT-Th, which results from intramolecular charge transfer (ICT). The LUMO energy levels of PBDT-OR and PBDT-Th are similar, -3.44 and -3.43 eV, respectively, while their HOMO energy levels are different, -5.25 and 5.17 eV, respectively, due to distinct electron-donating abilities of the BDT cores modified with alkoxy and thiophene groups. PBDT-OR and PBDT-Th show reduced electrochemical energy gaps, 1.81 and 1.74 eV, respectively. Meanwhile, the resulting polymers PBDT-OR and PBDT-Th are thermally stable under 300 and 389 °C, respectively.
  1. Paek S, Zimmermann I, Gao P, Gratia P, Rakstys K, Grancini G, Nazeeruddin MK, Rub MA, Kosa SA, Alamry KA, Asiri AM, Chem. Sci., 7, 6068 (2016)
  2. Cho I, Park SK, Kang B, Chung JW, Kim JH, Cho K, Park SY, Adv. Funct. Mater., 26(17), 2966 (2016)
  3. Liu Y, Chouai A, Degtyareva NN, Lutterman DA, Dunbar KR, Turro C, J. Am. Chem. Soc., 127(31), 10796 (2005)
  4. Yoo SJ, Yun HJ, Kang I, Thangaraju K, Kwon SK, Kin YH, J. Mater. Chem. C., 1, 2217 (2013)
  5. Mazzio KA, Luscombe CK, Chem. Soc. Rev., 44, 78 (2015)
  6. Li J, Zhang Y, To S, You L, Sun Y, ACS. Nano., 5, 6661 (2011)
  7. Liang Y, Xu Z, Xia J, Tsai ST, Wu Y, Li G, Ray C, Yu L, Adv. Mater., 22, 135 (2010)
  8. Kim BG, Ma X, Chen C, Ie Y, Coir EW, Hashemi H, Aso Y, Green PF, Kieffer J, Kim J, Adv. Funct. Mater., 23(4), 439 (2013)
  9. Cui W, Wudl F, Macromolecules, 46, 7232 (2013)
  10. Zhu Z, Waller D, Gaudiana R, Morana M, Muhlbacher D, MScharber, Brabec C, Macromolecules, 40, 198 (2007)
  11. Steckler TT, Zhang X, Hwang J, Honeyager R, Ohira S, Zhang XH, Grant A, Ellinger S, Odom SA, Sweat D, Tanner DB, Rinzler AG, Barlow S, Bredas JL, Kippelen B, Marder SR, Reynolds JR, J. Am. Chem. Soc., 131(8), 2824 (2009)
  12. Sylvianti N, Kim YH, Kim DG, Maduwu RD, Jin HC, Moon DK, Kim JH, Macromol. Res., 26(6), 552 (2018)
  13. Heo HJ, Kim HG, Nam G, Lee DH, Lee YU, Macromol. Res., 26(3), 238 (2018)
  14. Zimmermann D, Sprau C, Schroder J, Gregoriou VG, Avgeropoulos A, Chochos CL, Colsmann A, Janietz S, Kruger H, J. Polym. Sci. A: Polym. Chem., 56(13), 1457 (2018)
  15. Adil D, Kanimozhi C, Ukah N, Paudel K, Patil S, Guha S, ACS. Appl. Mater. Interfaces., 3, 1463 (2011)
  16. Douglas JD, Griffini G, Holcombe TW, Young EP, Lee OP, Chen MS, Frechet JM, J. Macromolecules, 45, 4069 (2012)
  17. Dou LT, Gao J, Richard E, You JB, Chen CC, Cha KC, He YJ, Li G, Yang Y, J. Am. Chem. Soc., 134(24), 10071 (2012)
  18. Zhang MJ, Gu Y, Guo X, Liu F, Zhang SQ, Huo LJ, Russell TP, Hou JH, Adv. Mater., 25(35), 4944 (2013)
  19. Hwang MC, Kang H, Yu K, Yun HJ, Kwon SK, Lee K, Kim YH, Sol. Energy Mater. Sol. Cells, 125, 39 (2014)
  20. Zhang MJ, Guo X, Ma W, Zhang SQ, Huo LJ, Ade H, Hou JH, Adv. Mater., 26(13), 2089 (2014)
  21. Jiang JM, Lin HK, Lin YC, Chen HC, Lan SC, Chang CK, Wei KH, Macromolecules, 47(1), 70 (2014)
  22. Sanjaykumar SR, Badgujar S, Song CE, Shin WS, Moon SJ, Kang IN, Lee J, Cho S, Lee SK, Lee JC, Macromolecules, 45(17), 6938 (2012)
  23. Peng Q, Huang Q, Hou X, Chang P, Xu J, Deng S, Chem. Commun., 48, 11452 (2012)
  24. Wu JS, Lin CT, Wang CL, Cheng YJ, Hsu CS, Chem. Mater., 24, 2391 (2012)
  25. Huang J, Zhu YX, Zhang LJ, Cai P, Xu XF, Chen JW, Cao Y, J. Polym. Sci. A: Polym. Chem., 52(12), 1652 (2014)
  26. Oliva MM, Casado J, Navarrete JTL, Patchkovskii S, Goodson T, Harpham MR, de Melo JSS, Amir E, Rozen S, J. Am. Chem. Soc., 132(17), 6231 (2010)
  27. Jung IH, Lo WY, Jang J, Chen W, Zhao D, Landry ES, Lu L, Talapin DV, Yu L, Chem. Mater., 26, 3450 (2014)
  28. Brunsveld L, Folmer BJB, Meijer EW, Sijbesma RP, Chem. Rev., 101(12), 4071 (2001)
  29. Huang F, Scherman OA, Chem. Soc. Rev., 41, 5879 (2012)
  30. Beck JB, Ineman JM, Rowan SJ, Macromolecules, 38(12), 5060 (2005)
  31. Guerrero-Sanchez C, Lohmeijer BGG, Meier MAR, Schubert US, Macromolecules, 38(25), 10388 (2005)
  32. Newkome GR, Wang P, Moorefiled CN, Cho TJ, Mohopatra PP, et al., Science, 312, 1782 (2006)
  33. Yu SC, Kwok CC, Chan WK, Che CM, Adv. Mater., 15(19), 1643 (2003)
  34. Dobrawa R, Wurthner F, Chem. Commun., 17, 1878 (2002)
  35. Schlutter F, Wild A, Winter A, Hager MD, Baumgaertel A, Friebe C, Schubert US, Macromolecules, 43(6), 2759 (2010)
  36. Li Y, Xu B, Li H, Cheng W, Xue L, Chen F, Lu H, Tian W, J. Phys. Chem. C, 115, 2386 (2011)
  37. Huo LJ, Ye L, Wu Y, Li ZJ, Guo X, Zhang MJ, Zhang SQ, Hou JH, Macromolecules, 45(17), 6923 (2012)
  38. Chen X, Zhou Q, Cheng Y, Geng Y, Ma D, Xie Z, Wang L, J. Lumines., 126, 81 (2007)
  39. Roberto D, Tessore F, Ugo R, Bruni S, Manfredi A, Quici S, Chem. Commun., 8, 846 (2002)
  40. Pommerehne J, Vestweber H, Guss W, Mahrt RF, Bassler H, Porsch M, Daub, J. Adv. Mater., 7, 551 (1995)