화학공학소재연구정보센터
Macromolecular Research, Vol.27, No.6, 543-550, June, 2019
Polyurethane Foams with 1,3,5-Triazine Ring and Silicon Atoms
E-mail:
The method of obtaining polyurethane foams based on two oligoetherols, synthesized from (1) melamine and propylene carbonate, and (2) from metasilicic acid, glycidol and ethylene carbonate, is elaborated. The physical properties of PUFs are tested depending on composition of oligoetherol substrates mixture used. It has been found that 1,3,5-triazine rings in PUF increase their thermal resistance, while silicon contributes to improvement of mechanical properties of PUF. The silicon-modified PUFs can stand long term heating at 150-200 °C with concomitant increase of compression strength and decrease of flammability of PUFs. The PUFs heated at 150 °C for one month become self-extinguishing, or even inflammable upon exposure at 175 °C.
  1. Czuprynski B, Questions of Chemistry and Technology of Polyurethanes, 2004.
  2. Wirpsza Z, Polyurethanes, WNT, Warsaw, 1991.
  3. Lubczak J, Polimery, 56, 360 (2011)
  4. Lubczak J, Polimery, 56, 452 (2011)
  5. Lubczak R, Open J. Organic Polym. Mater., 2, 1 (2012)
  6. Lubczak R, E-Polymers, 070, 1 (2012)
  7. Lubczak R, Cell. Polym., 34, 15 (2015)
  8. Janowska G, Przygocki W, Włochowicz A, Flammability of Polymers and Polymeric Materials, WNT, Warsaw, 2007.
  9. Yi H, Yan KL, J. Appl. Polym. Sci., 109(4), 2169 (2008)
  10. Yang CH, Liu HJ, Liu YP, Liao WT, Colloid. Int. Sci., 302, 123 (2006)
  11. Kim S, Park SH, Kim BK, Colloid Polym. Sci., 284, 1067 (2006)
  12. Zhao CY, Yan Y, Hu ZH, Li LP, Fan XZ, J. Wuhan University of Technology, 36, 17 (2014)
  13. Feng XY, Li SK, Wang Y, Wang YC, Liu JX, Adv. Mater. Res., 815, 246 (2013)
  14. Nikje MMA, Tehrani ZM, Polym. Eng. Sci., 50(3), 468 (2010)
  15. Frances AB, Banon MVN, IOP Conf. Series: Mater. Sci. Eng., 1, 64 (2014)
  16. Levchik SV, Weil ED, Polym. Int., 53, 1901 (2004)
  17. Zhang S, Horrocks AR, Prog. Polym. Sci, 28, 1517 (2003)
  18. Mercado LA, Galia M, Reina JA, Polym. Degrad. Stabil., 91, 2588 (2006)
  19. Terraza CA, Tagle LH, Leiva A, Poblete L, Concha FJ, J. Appl. Polym. Sci., 109(1), 303 (2008)
  20. Verdolotti L, Lavorgna M, Lamanna R, Di Maio E, Iannace S, Polymer, 56, 20 (2015)
  21. Chmiel E, Lubczak J, Polym. Bull., 75(4), 1579 (2018)
  22. Lubczak J, Chmiel-Szukiewicz E, Duliban J, Głowacz-Czerwonka D, et al., Przemysł Chemiczny, 10, 1690 (2014)
  23. Cellular Plastics and Rubbers. Determination of apparent (bulk) Density, Polish (European) Standards PN-EN ISO 845-2000. Ed. Polish Committee for Standardization.
  24. Cellular Plastics, rigid. Determination of Water Absorption. Polish (European) Standards PN-EN ISO 2896-1986. Ed. Polish Committee for Standardization.
  25. Cellular Plastics, rigid. Test of dimensional Stability. Polish (European) Standards PN-EN ISO 2796-1986. Ed. Polish Committee for Standardization.
  26. Cellular Plastics, Compression Test for rigid Materials. Polish (European) Standards PN-EN ISO 844-1978. Ed. Polish Committee for Standardization.
  27. Flexible Cellular polymeric Materials - Laboratory Characteristics of small specimens Subject to a small Flame. Polish (European) Standards PN-EN ISO 3582-2002. Ed. Polish Committee for Standardization.
  28. Plastics - Simple Heat Release Test using a conical radiant Heater and a thermopile Detector. European Standards EN-ISO 13927:2015-05.