화학공학소재연구정보센터
Macromolecular Research, Vol.27, No.6, 558-564, June, 2019
Evaluation of Cartilage Regeneration in Gellan Gum/agar Blended Hydrogel with Improved Injectability
E-mail:
Gellan gum is known to be one of the biocompatible materials that resemble living tissues, continuously delivering stem cells or general cells, and filling voids in the wound. In spite of the many advantages of gellan gum, it has difficulty in the application by inserting the scaffolds into the body. In order to generalize gellan gum for medical purpose, it is necessary to increase the injectability of gellan gum. In this study, gellan gum solutions with 0.2, 0.4, 0.6, 0.8 wt% of agar were prepared. The obtained hydrogels were tested for rheological properties and chondrocytes adhesion, morphology and proliferation. Results showed that the addition of agar, in the starting GG solution, allows extruding the material producing micro-porous scaffolds. The biological evaluation demonstrated that the adhesion and proliferation of chondrocytes increase with the presence of agar in the final structure. The solutions composed of GG and agar represent an efficient, fast and high reproducible methodology with the potential to be used as an injectable hydrogel for cartilage regeneration purposes.
  1. Elder BD, Athanasiou KA, Tissue Eng Part B Rev., 15, 43 (2009)
  2. Schulz RM, Bader A, Eur Biophys J., 36, 539 (2007)
  3. Pritzker KPH, Gay S, Jimenez SA, Ostergaard K, Pelletier, Revell PA, Salter D, Path FRC, van den Berg WB, Osteoarthritis and Cartilage, 14, 13 (2006)
  4. Tuan RS, Chen AF, Klatt BA, J Am Acad Orthop Surg., 21, 303 (2013)
  5. Hutmacher DW, The Biomaterials: Silver Jubilee Compendium, 21, 2529 (2000)
  6. Riley SL, Dutt S, de la Torre R, Chen AC, Sah RL, Ratcliffe A, J. Mater. Sci.: Mater. Med., 12, 983 (2001)
  7. Gu ZQ, Xiao JM, Zhang XH, Biomed. Mater. Eng., 8, 75 (1998)
  8. Ma R, Xiong D, Miao F, Zhang J, Peng Y, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 29, 1979 (2009)
  9. Altman RD, Manjoo A, Fierlinger A, Niazi F, Nicholls M, BMC Musculoskelet Disord, 16, 321 (2015)
  10. Choi B, Kim SY, Lin B, Wu BM, Lee M, ACS Appl. Mater. Interfaces, 6, 20110 (2014)
  11. Wu T, Li Y, Lee DS, Macromol. Res., 25(6), 480 (2017)
  12. Ponticiello MS, Schinagl RM, Kadiyala S, Barry FP, J. Biomed. Mater. Res., 52, 246 (2000)
  13. Hsiu P, Chao G, Yodmuang S, Wang XQ, Sun L, Kaplan DL, Novakovic GV, J. Biomed. Mater. Res. B: Appl. Biomater., 95, 84 (2010)
  14. Park HJ, Lee JS, Lee OJ, Sheikh FA, Moon BM, Ju HW, Kim JH, Kim DK, Park CH, Macromol. Res., 22(6), 592 (2014)
  15. Liu M, Zeng X, Ma C, Yi H, Ali Z, Mou X, Li S, Deng Y, He N, Bone Research, 5, 17014 (2017)
  16. Oliveira JT, Martins L, Picciochi R, Malafaya PB, Sousa RA, Neves NM, Mano JF, Reis RL, J. Biomed. Mater. Res. PART A, 93A, 852 (2010)
  17. Duckworth M, Yaphe W, Carbohydr. Res., 16, 189 (1971)
  18. Chen SK, Hsu CH, Tsai ML, Chen RH, Drummen GPC, Int. J. Mol. Sci., 14, 19399 (2013)
  19. Turo CT, Gnavi S, Ruini F, Gambarotta G, Gioffredi E, Chiono V, Perroteau I, Ciardelli G, J. Tissue. Eng. Regen. Med., 11, 197 (2017)
  20. Yang F, Xia S, Tan C, Zhang X, Eur. Food. Res. Technol., 237, 467 (2013)
  21. Liao J, Qu Y, Chu B, Zhang X, Qian Z, Scientific Reports, 5, 9879 (2015)
  22. Greiner M, Yin XF, Diaz L, Griesshaber E, Weitzel F, Ziegler A, Verdaguer SV, Schmahl WW, Crystal Growth Design, 18, 1401 (2018)