화학공학소재연구정보센터
Macromolecular Research, Vol.27, No.6, 572-578, June, 2019
New Hexagonally Ordered Monolayer Electrode with Monodisperse Carbon/Fe3O4 Microspheres for High Performance Lithium Ion Battery Anodes
E-mail:
This work details the facile preparation of a hexagonally ordered monolayer electrode with monodispersed hollow C/Fe3O4 microspheres as a novel anode candidate for lithium-ion batteries. The monolayer electrode was produced by the heat treatment of a polyvinyl alcohol film comprising a monolayer of microspheres. The electrode was prepared by stamping with microspheres assembled into the monolayer, using an ordered patterning micro-framework polydimethylsiloxane on a polyvinyl alcohol spin-coated cupper foil. The morphological and structural characterizations of the monolayer electrode were conducted by optical microscopy, scanning electron microscopy, focused-ion beam scanning electron microscopy, transmission electron microscopy, and X-ray diffractometery. Although the monolayer electrode was composed of the active materials only without the use of any polymeric binder or carbon additives such as acetylene black and Super-P, the electrode exhibited a superior long-term cycling stability and rate capability with the coulombic efficiency of 99% at a high current rate due to the good structural stability and low electrical resistance as a result of the ordered monolayer structure.
  1. Muraliganth T, Murugan AV, Manthiram A, Chem. Commun., 7360 (2009).
  2. Liu H, Wang G, Wang J, Wexler D, Electrochem. Commun., 10, 1879 (2008)
  3. Xiong QQ, Lu Y, Wang XL, Gu CD, Qiao YQ, Tu JP, J. Alloy. Compd., 536, 219 (2012)
  4. Jin SL, Deng HG, Long DH, Liu XJ, Zhan LA, Liang XY, Qiao WM, Ling LC, J. Power Sources, 196(8), 3887 (2011)
  5. Zhang H, Braun PV, Nano Lett., 12, 2778 (2012)
  6. Fan X, Dou P, Jiang A, Ma D, Xu X, ACS Appl. Mater. Interfaces, 6, 22282 (2014)
  7. Yiping T, Xiaoxu T, Guangya H, Guoqu Z, Electrochim Acta, 117, 172 (2014)
  8. Liu JY, Zhang HG, Wang JJ, Cho J, Pikul JH, Epstein ES, Huang XJ, Liu JH, King WP, Braun PV, Adv. Mater., 26(41), 7096 (2014)
  9. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM, J. Power Sources, 97-98, 235 (2001)
  10. Laruelle S, Grugeon S, Poizot P, Dolle M, Dupont L, Tarascon JM, J. Electrochem. Soc., 149(5), A627 (2002)
  11. He Y, Huang L, Cai JS, Zheng XM, Sun SG, Electrochim. Acta, 55(3), 1140 (2010)
  12. Lee GH, Park JG, Sung YM, Chung KY, Cho WI, Kim DW, Nanotechnology, 20, 295205 (2009)
  13. Yoon T, Chae C, Sun YK, Zhao X, Kung HH, Lee JK, J. Mater. Chem., 21, 17325 (2011)
  14. Hao Q, Lei D, Yin X, Zhang M, Liu S, Li Q, Chen L, Wang T, J. Solid State Electrochem., 15, 2563 (2011)
  15. Baksh MM, Jaros M, Groves JT, Nature, 427, 139 (2004)
  16. Zhang JH, Li YF, Zhang XM, Yang B, Adv. Mater., 22(38), 4249 (2010)
  17. Marlow F, Muldarisnur, Sharifi P, Brinkmann R, Mendive C, Angew. Chem.-Int. Edit., 48, 6212 (2009)
  18. Li X, Wang TQ, Zhang JH, Yan X, Zhang XM, Zhu DF, Li W, Zhang X, Yang B, Langmuir, 26(4), 2930 (2010)
  19. Park C, Lee T, Xia YN, Shin TJ, Myoung J, Jeong U, Adv. Mater., 26(27), 4633 (2014)
  20. Hwang JK, Lim HS, Sun YK, Suh KD, J. Power Sources, 244, 538 (2013)
  21. Chou SL, Wang JZ, Wexler D, Konstantinov K, Zhong C, Liu HK, Dou SX, J. Mater. Chem., 20, 2092 (2010)
  22. Hang BT, Doi T, Okada S, Yamaki JI, J. Power Sources, 174(2), 493 (2007)
  23. Balaya P, Li H, Kienle L, Maier J, Adv. Funct. Mater., 13(8), 621 (2003)