Korean Journal of Chemical Engineering, Vol.36, No.7, 1090-1101, July, 2019
Kinetic effect and absorption performance of piperazine activator into aqueous solutions of 2-amino-2-methyl-1-propanol through post-combustion CO2 capture
E-mail:,
The current study investigates the absorption kinetics of carbon dioxide (CO2) released from power plant exhaust using activated mixture of 2-amino-2-methyl-1-propanol (AMP) upgraded by piperazine (PZ). An absorption experiment of (AMP+PZ+H2O) was conducted in a wetted wall column absorber with a temperature variation of 298- 313 K and CO2 partial pressure of 5-15 kPa. PZ is considered to be a rate promoter by adjustable mass proportion varying from 2 to 10 wt%, while the concentration of entire amine solution remained constant at 30 wt%. Based on the Zwitterions mechanism, an overall reaction pattern of (AMP+PZ+H2O) with CO2 was designed. Considering pseudofirst order reaction criteria, the kinetic rate factors and the overall second order rate constants were calculated. The overall rate constant (kOV) experienced a significant enhancement with a small addition of PZ into aqueous AMP solution. The observed second-order rate constants (k2, PZ) in this experimental study were 60,403, 81,925, 98,591 and 116,521m3ㆍkmol- 1ㆍs- 1 at 298, 303, 308 and 313 K correspondingly. The experimental specific rate of absorption into (AMP+PZ+H2O) in connection with the model anticipated rate was determined with deviation of around 4.86% average absolute deviation (AAD).
- Scripps Institution of Oceanography, University of California, San Diego. http://scripps.uscd.edu/programs/keeling curve (2018).
- Intergovernmental Panel on Climate Change (IPCC), 2001c.
- IEA, World Energy Outlook Special Report on Energy and Climate Change. International Energy Agency (IEA), 115 (2015).
- Rao A, Rubin B, Edward S, Environ. Sci. Technol., 36, 4467 (2002)
- Rochelle GT, Science, 325, 1652 (2009)
- Rangwala HA, Morrell BR, Mather AE, Otto FD, Can. J. Chem. Eng., 70, 482 (1992)
- Kohl A, Nielsen R, Gas Purification. 5th Ed., Gulf Publishing Co., Houston (1997).
- Rinker EB, Ashour SS, Sandall OC, Ind. Eng. Chem. Res., 39(11), 4346 (2000)
- deMontigny D, Tontiwachwuthikul P, Chakma A, Ind. Eng. Chem. Res., 44(15), 5726 (2005)
- Osman K, Coquelet C, Ramjugernath D, J. Chem. Eng. Data, 57(5), 1607 (2012)
- Pacheco MA, Kaganoi S, Rochelle GT, Chem. Eng. Sci., 55(21), 5125 (2000)
- Zoghi AT, Feyzi F, Zarrinpashneh S, Int. J. Greenhouse. Gas Control, 7, 12 (2012)
- Rowland R, Yang Q, Jackson P, Attalla M, Energy Procedia, 4, 195 (2011)
- Lu JG, Cheng M, Ji Y, Hui Z, J. Fuel Chem. Technol., 37, 740 (2009)
- Huser N, Schmitz O, Kenig EY, Chem. Eng. Sci., 157, 221 (2017)
- Mumford KA, Wu Y, Smith KH, Stevens GW, Front. Chem. Sci. Eng., 9, 125 (2015)
- Liu YC, Fan WD, Wang K, Wang JC, J. Clean Prod., 112, 4012 (2016)
- El Hadri N, Quang DV, Goetheer ELV, Abu Zahra MRM, Appl. Energy, 185, 1433 (2017)
- Bishnoi S, Rochelle GT, AIChE J., 48(12), 2788 (2002)
- Sun WC, Yong CB, Li MH, Chem. Eng. Sci., 60(2), 503 (2005)
- Samanta A, Bandyopadhyay SS, Chem. Eng. Sci., 64(6), 1185 (2009)
- Sartori G, Savage DW, Ind. Eng. Chem. Fundam., 22, 239 (1983)
- Gordesli FP, Ume CS, Alper E, Int. J. Chem. Kinet., 45, 566 (2013)
- Ume CS, Ozturk MC, Alper E, Chem. Eng. Technol., 35(3), 464 (2012)
- Appl M, Wagner U, Henrici HJ, Kuessner K, Volkamer F, Ernst-Neust N, Removal of CO2 and/or H2 S and/or COS from gases containing these constituents, US Patent 4,336,233 (1982).
- Dash SK, Samanta A, Samanta AN, Bandyopadhyay SS, Chem. Eng. Sci., 66(14), 3223 (2011)
- Khan AA, Halder GN, Saha AK, Int. J. Greenhouse. Gas Control, 44, 217 (2016)
- Bishnoi S, Rochelle GT, Chem. Eng. Sci., 55(22), 5531 (2000)
- Derks PWJ, Kleingeld T, van Aken C, Hogendoom JA, Versteeg GF, Chem. Eng. Sci., 61(20), 6837 (2006)
- Samanta A, Bandyopadhyay SS, Chem. Eng. Sci., 62(24), 7312 (2007)
- Caplow M, J. Am. Chem. Soc., 90, 6795 (1968)
- Danckwerts PV, Chem. Eng. Sci., 34, 443 (1979)
- Pinsent BRW, Pearson L, Roughton FWJ, Trans. Faraday Soc., 52, 1512 (1956)
- Kierzkowska-Pawlak H, Siemieniec M, Chacuk A, Chem. Process., 33, 7 (2012)
- Liao CH, Li MH, Chem. Eng. Sci., 57(21), 4569 (2002)
- Yih SM, Shen KP, Ind. Eng. Chem. Res., 27, 2237 (1988)
- Saha AK, Bandyopadhyay SS, Biswas AK, Chem. Eng. Sci., 50(22), 3587 (1995)
- Geankoplis CJ, Transport Processes and Separation Process Principles, 4th Ed., Prentice-Hall, Englewood Cliffs, NJ (2003).
- Clarke JKA, Ind. Eng. Chem. Fundam., 3, 239 (1964)
- Haimour N, Sandall OC, Chem. Eng. Sci., 39, 1791 (1984)
- AI-Ghawas HA, Hagewiesche DP, Ruiz-Ibanez G, Sandall OC, J. Chem. Eng. Data, 34, 385 (1989)
- Xu S, Otto FD, Mather AE, J. Chem. Eng. Data, 36, 71 (1991)
- Haimour NM, J. Chem. Eng. Data, 35, 177 (1990)
- Saha AK, Bandyopadhyay SS, Biswas AK, J. Chem. Eng. Data, 38, 82 (1993)
- Laddha SS, Diaz JM, Danckwerts PV, Chem. Eng. Sci., 36, 228 (1981)
- Versteeg GF, van Swaaij WPM, J. Chem. Eng. Data, 33, 29 (1988)
- Doraiswamy LK, Sharma MM, Fluid-Fluid-Solid Reactions, Vol. 2, Wiley, New York (1984).
- Xu GW, Zhang CF, Qin SJ, Wang YW, Ind. Eng. Chem. Res., 31, 921 (1992)
- Seo DJ, Hong WH, Ind. Eng. Chem. Res., 39(6), 2062 (2000)
- Zhang X, Zhang CF, Qin SJ, Zheng ZS, Ind. Eng. Chem. Res., 40(17), 3785 (2001)