화학공학소재연구정보센터
Clean Technology, Vol.25, No.2, 129-139, June, 2019
인산 및 수증기 활성화에 의한 대나무 활성탄 제조 및 특성 연구
Preparation and Characterization of Bamboo-based Activated Carbon by Phosphoric Acid and Steam Activation
E-mail:
초록
대나무는 지구상에 존재하는 식물 중 적절한 기후와 토양조건에서 생산성이 가장 높고, 성장속도가 가장 빠른 다년생 식물로 알려져 있다. 전통적으로 아시아에서 대나무는 음식, 건축 및 다양한 재료로 활용되고 있다. 바이오매스 자원으로 대나무는 열분해과정을 거쳐 활성탄으로 제조될 수 있다. 본 연구에서는 탄화온도, 활성화 온도, 시간, 수증기의 양, 그리고 인산의 양 등을 변화에 따른 최적의 대나무 활성탄 제조 연구를 수행하였다. 대나무 탄화 후 수증기 활성화를 위해 700 ~ 900 ℃ 의 온도, 0.8 ~ 1.8 mL-H2O g-char-1 h-1 수증기 유량 범위에서 1 ~ 3 h 동안 활성화를 진행하였다. 수증기 유량을 1.4mL-H2O g-char-1 h-1으로 2 h 동안 실험한 결과 활성탄 수율과 비표면적은 각각 2.04 ~ 20.59 wt%, 499.17 ~ 1074.04 m2 g-1의 값이 나왔다. 대나무와 인산의 질량비를 1:1로 혼합한 후 700 ℃에서 유량 1.4 mL-H2O g-char-1 h-1 속도로 2 h 동안 활성화를 진행한 결과 활성탄 수율과 비표면적은 각각 24.67 wt%, 1389.59 m2 g-1의 값이 나타냈다. 제조된 대나무 활성탄을 대상으로 메틸렌블루 흡착 실험을 통해 유사 1차, 2차 속도식 모델을 적용하였으며, 화학적 흡착을 의미하는 유사 2차 속도식에 따랐다.
Bamboo is an evergreen perennial plant, and it is known as one of the most productive and fastest-growing plants in the world. It grows quickly in moderate climates with only moderate water and fertilizer. Traditionally in Asia, bamboo is used for building materials, as a food source, and as versatile raw materials. Bamboo as a biomass feedstock can be transformed to prepare activated carbon using the thermal treatment of pyrolysis. The effect of process variables such as carbonization temperature, activation temperature, activation time, the amount of steam, and the mixing ratio of phosphoric acid and bamboo were systematically investigated to optimize the preparation conditions. Steam activation was proceeded after carbonization with a vapor flow rate of 0.8 ~ 1.8 mL-H2O g-char-1 h-1 and activation time of 1 ~ 3 h at 700 ~ 900 ℃. Carbon yield and surface area reached 2.04 ~ 20.59 wt% and 499.17 ~ 1074.04 m2 g-1, respectively, with a steam flow rate of 1.4 mL-H2O g-char-1 h-1 for 2 h. Also, the carbon yield and surface area were 24.67 wt% and 1389.59 m2 g-1, respectively, when the bamboo and phosphoric acid were mixed in a 1:1 weight ratio (700 ℃, 2 h, 1.4 mL-H2O g-char-1 h-1). The adsorption of methylene blue into the bamboo activated carbon was studied based on pseudo first order and second order kinetics models. The adsorption kinetics were found to follow the pseudo second order model, which is governed by chemisorption.
  1. Marsh H, Rodriguez-Reinoso F, “Activated Carbon,” Elsevier, 25-26 (2014).
  2. Tan XF, Liu SB, Liu YG, Gu YL, Zeng GM, Hua XJ, Wang X, Liu SH, Jiang LH, Bioresour. Technol., 227, 359 (2017)
  3. Farma R, Deraman M, Awitdrus A, Talib IA, Taer E, Basri NH, Manjunatha JG, Ishak MM, Dollah BNM, Hashmi SA, Bioresour. Technol., 132, 254 (2013)
  4. Chan KY, Zwieten LV, Meszaros I, Downie A, Joseph S, Aust. J. Soil Res., 45, 629 (2007)
  5. Zou Y, Han BX, Energ. Fuel, 15, 1383 (2001)
  6. Zhang J, Zhong Z, Shen D, Zhao J, Zhang H, Yang M, Li W, Energy Fuels., 25, 2187 (2011)
  7. Zhang YJ, Xing ZJ, Duan ZK, Li M, Wang Y, Appl. Surf. Sci., 315, 279 (2014)
  8. Lou K, Rajapaksha AU, Ok YS, Chang SX, Chem. Spec. Bioavailab., 28, 42 (2016)
  9. Molina A, Haynes BS, Shaddix CR, Energetica., 36, 19 (2006)
  10. Espinal JF, Mondragon F, Truong TN, Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chem., 49, 822 (2004)
  11. Gercel O, Ozcan A, Ozcan AS, Gercel HF, Appl. Surf. Sci., 253(11), 4843 (2007)
  12. Danish M, Hashim R, Rafatullah M, Sulaiman O, Ahmad A, Clean-Soil Air Water., 39, 392 (2011)
  13. You BO, NIFOS, 102, 2288 (2018)
  14. Ly HV, Kim J, Kim SS, Renew. Energy, 54, 91 (2013)
  15. Ly HV, Kim SS, Kim J, Choi JH, Woo HC, Energy Conv. Manag., 106, 260 (2015)
  16. Korean Standard Certification, Korean Agency for Technology and Standards, KS M-1802, (2003).
  17. Ly HV, Lim DH, Sim JW, Kim SS, Kim J, Energy, 162, 564575 (2018)
  18. Lim DH, Sim JW, Kim SS, Kim J, Korean Chem. Eng. Res., 54(5), 687 (2016)
  19. Choi GH, Kangwon National University, Mater Thesis (2013).
  20. Demirbas A, Fuel, 76(5), 431 (1997)
  21. Jagtoyen M, Derbyshire F, Carbon, 36, 1085 (1998)
  22. Jagtoyen M, Derbyshire F, Carbon, 31, 1185 (1993)
  23. Solum MS, Pugmire RJ, Jagtoyen M, Derbyshire F, Carbon, 33, 1247 (1995)
  24. SYakout SM, Sharaf El-Deen G, Arab. J. Chem., 9, S1155 (2016)
  25. Krumins J, Klavins M, Seglins V, Kaup E, Mat. Sci. App. Chem., 26, 106 (2012)
  26. Movasaghi Z, Rehman S, Rehman I, Appl. Spectrosc. Rev., 43(2), 134 (2008)
  27. Rehman I, Movasaghi Z, Rehman S, CRC Press. (2012).
  28. Lee GB, Kim HJ, Park SK, Ok YS, Ahn JW, J. Korean Soc. Water Environ., 32(3), 291 (2016)
  29. Chiou MS, Li HY, J. Hazard. Mater., 93(2), 233 (2002)
  30. Ho YS, McKay G, Process Biochem., 34(5), 451 (1999)
  31. Ho YS, McKay G, Process Saf. Environ. Protect., 76(4), 332 (1998)
  32. Lee CH, Park JM, Lee MG, J. Environ. Sci. Int., 24(2), 151 (2015)