화학공학소재연구정보센터
Clean Technology, Vol.25, No.2, 147-152, June, 2019
타공판에 따른 전기집진기 내의 유동분포
Flow Distribution in an Electrostatic Precipitator with a Perforated Plate
E-mail:
초록
각종 산업시설과 발전시설에서 배출되는 입자상 물질의 문제로 인하여, 입자상 물질의 제거 효율이 뛰어난 전기집진기의 중요성이 증가하고 있다. 전기집진기의 효율은 전기집진기 내부의 유동분포에 매우 큰 영향을 받으므로, 전기집진기 내부의 유동 균일화를 위한 연구가 지속적으로 이루어지고 있다. 본 연구에서는 유입부, 디퓨저, 본체, 수축부로 구성된 길이 3.5m, 높이 0.875 m 전기집진기를 제작하였다. 디퓨저에는 3개의 타공판을 설치하였다. 5개의 피토관을 높이 방향으로 부착하여 전기집진기 단면 55지점의 유속을 측정하였다. 디퓨저에 타공판이 설치되었을 때, 전기집진기 내부의 유동분포는 RMS%를 이용하여 평가하였다. 또한 타공판의 타공률 변화에 따른 유속분포도 분석하였다. 그 결과, 타공판이 전기집진기 내부의 유동분포에 미치는 영향이 매우 큼을 확인하였고, 디퓨저 입구에서부터 40%, 50%, 50% 타공률을 가진 타공판을 설치하였을 때, 가장 균일한 유동분포를 나타내었다.
Electrostatic precipitator that shows a good performance for the removal of particulate matter is important for controlling emissions from industrial facilities and power plants. The efficiency of the electrostatic precipitator on the removal of particulate matter is highly affected by the flow pattern inside the electrostatic precipitator. A number of studies have been conducted to obtain uniform flow distribution inside electrostatic precipitators. An electrostatic precipitator (ESP) with a length of 3.5 m and a height of 0.875 m was designed and installed in this study. The ESP included an inlet duct, diffuser, body, and contractor. Three perforated plates were installed in the diffuser of the ESP. Five pitot tubes were installed vertically and used to measure flow distribution in the cross section of the ESP body. Root mean square deviation value (RMS%) was used to examine the flow distribution inside the ESP when the perforated plates were installed in the diffuser. Flow distribution was also investigated in relation to the porosity of the perforated plate. The results showed that the perforated plates improved greatly the flow distribution inside the electrostatic precipitator. In addition, the most uniform flow distribution was found with 40%, 50%, and 50% porous perforated plates located from the inlet of the diffuser.
  1. Jedrusik M, Swierczok A, Luszkiewicz D, Przeglad Elektrotechniczny, 93, 2 (2017)
  2. Barratt D, Kim T, Proc. Inst. Mech. Eng. A: J. Power Energy, 229, 88 (2015)
  3. Reneau LR, Johnston J, Kline SJ, J. Basic Eng., 89, 141 (1967)
  4. IDELCHIK I, Aleksandrov V, Therm. Eng., 21, 85 (1974)
  5. Jedrusik M., Elektrofiltry Rozwiniecie wybranych technik Podwyzszania skutecznosci odpylania. Oficyna Wydawnicza Politechniki Wroclawskiej (2008).
  6. Ward-Smith A, Lane D, Reynolds A, Sahin B, Shawe D, Int. J. Mech. Sci., 33, 4 (1991)
  7. Sahin B, Ward-Smith A, Int. J. Mech. Sci., 35, 117 (1993)
  8. Sahin B, Ward-Smith A, Int. J. Heat Fluid Flow, 8, 124 (1987)
  9. Mehta R, Prog. Aeosp. Sci., 18, 59 (1979)
  10. Sahin B, Ward-Smith A, Lane D, J. Wind Eng. Ind. Aerodyn., 58, 33 (1995)
  11. Swaminathan M, Mahalakshmi N, J. Appl. Sci., 10, 2426 (2010)