화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.76, 258-267, August, 2019
High-performance ZnS@graphite composites prepared through scalable high-energy ball milling as novel anodes in lithium-ion batteries
E-mail:,
A ZnS@graphite composite was developed using a high-energy mechanical milling (HEBM) for use as an anode in lithium-ion batteries. Compared to previous studies on ZnS-based electrodes prepared using different processes, the HEBM is advantageous because of its simplicity, scalability, and greater performance. In this work, we mainly focused on the finding of optimal carbon-based matrix that can significantly enhance the performance of ZnS-based composite electrode. In comparison with other types of ZnS-based composites, ZnS@graphite exhibited superior performances with a reversible capacity of 444 mA h g-1 after 300 cycles for the half cell (capacity retention of 71% compared to that of the 2nd cycle), 117 mA h g-1 after 50 cycles for the full cell (energy density of 363 W h kg-1), and excellent rate capability (80% capacity retention at 3000 mA g-1 compared with that at 100 mA g-1). This is attributed to higher surface area (associated with solid-lubrication of graphite), homogeneous mixing, and high electrical conductivity as confirmed by various characterizations including BET, HRTEM, SEM, and sheet resistance measurements. The origin of the improved cyclic stability and rate capability of ZnS@graphite over other ZnS-based electrodes was further investigated by CV, EIS, and ex situ SEM.
  1. Li Y, Song J, Yang J, Renew. Sust. Energ. Rev., 37, 627 (2014)
  2. Zhang WJ, J. Power Sources, 196(1), 13 (2011)
  3. Wang YX, Liu B, Li QY, Cartmell S, Ferrara S, Deng ZQD, Xiao J, J. Power Sources, 286, 330 (2015)
  4. Roy P, Srivastava SK, J. Mater. Chem. A, 3, 2454 (2015)
  5. Balogun MS, Qiu W, Luo Y, Meng H, Mai W, Onasanya A, Olaniyi TK, Tong Y, Nano Res., 9, 2823 (2016)
  6. Goriparti S, Miele E, De Angelis F, Di Fabrizio E, Zaccaria RP, Capiglia C, J. Power Sources, 257, 421 (2014)
  7. An SJ, Li J, Daniel C, Mohanty D, Nagpure S, Wood DL, Carbon, 105, 52 (2016)
  8. Larcher D, Beattie S, Morcrette M, Edstrom K, Jumas JC, Tarascon JM, J. Mater. Chem., 17, 3759 (2007)
  9. Ji L, Lin Z, Alcoutlabi M, Zhang X, Energy Environ. Sci., 4, 2682 (2011)
  10. Zhang WJ, J. Power Sources, 196(3), 877 (2011)
  11. Obrovac MN, Chevrier VL, Chem. Rev., 114(23), 11444 (2014)
  12. Nam KH, Park CM, J. Mater. Chem. A, 4, 8562 (2016)
  13. Chan CK, Zhang XF, Cui Y, Nano Lett., 8, 307 (2008)
  14. Song T, Xia J, Lee JH, Lee DH, Kwon MS, Choi JM, Wu J, Doo SK, Chang H, Park WI, Zang DS, Kim H, Huang Y, Hwang KC, Rogers JA, Paik U, Nano Lett., 10, 1710 (2010)
  15. Son SY, Hur J, Kim KH, Son HB, Lee SG, Kim IT, J. Power Sources, 365, 372 (2017)
  16. Mun YS, Yoon Y, Hur J, Park MS, Bae J, Kim JH, Yoon YS, Yoo IS, Lee SG, Kim IT, J. Power Sources, 362, 115 (2017)
  17. Feng Y, Zhang Y, Wei Y, Song X, Fu Y, Battaglia VS, Phys. Chem. Chem. Phys., 18, 30630 (2016)
  18. He L, Liao XZ, Yang K, He YS, Wen W, Ma ZF, Electrochim. Acta, 56(3), 1213 (2011)
  19. Jang YS, Kang YC, Phys. Chem. Chem. Phys., 15, 16437 (2013)
  20. Zhang RP, Wang Y, Jia MQ, Xu JJ, Pan EZ, Appl. Surf. Sci., 437, 375 (2018)
  21. Su D, Kretschmer K, Wang G, Adv. Eng. Mater., 6, 150178 (2016)
  22. Chen H, Zhang B, Cao Y, Wang X, Yao Y, Yu W, Zheng J, Zhang J, Tong H, Ceram. Int., 44, 13706 (2018)
  23. Qin W, Li DS, Zhang XJ, Yan D, Hu BW, Pan LK, Electrochim. Acta, 191, 435 (2016)
  24. Zhang S, Ueno K, Dokko K, Watanabe M, Adv. Eng. Mater., 5, 150011 (2015)
  25. Barghamadi M, Kapoor A, Wen C, J. Electrochem. Soc., 160(8), A1256 (2013)
  26. Manthiram A, Fu YZ, Chung SH, Zu CX, Su YS, Chem. Rev., 114(23), 11751 (2014)
  27. Li J, Fu Y, Shi X, Xu Z, Zhang Z, Chem. Eur. J., 23, 157 (2017)
  28. Du XF, Zhao HL, Lu Y, Zhang ZJ, Kulka A, Swierczek K, Electrochim. Acta, 228, 100 (2017)
  29. Park AR, Jeon KJ, Park CM, Electrochim. Acta, 265, 107 (2018)
  30. Li J, Yan D, Zhang X, Hou S, Lu T, Yao Y, Pan L, J. Mater. Chem. A, 5, 20428 (2017)
  31. Mao M, Jiang L, Wu L, Zhang M, Wang T, J. Mater. Chem. A, 3, 13384 (2015)
  32. Fu Y, Zhang Z, Yang X, Gan Y, Chen W, RSC Adv., 5, 86941 (2015)
  33. Wang L, Ju J, Deng N, Wang G, Cheng B, Kang W, Electrochem. Commun., 96, 1 (2018)
  34. Ma J, Wang X, Wang H, Wang G, Ma S, J. Alloy. Compd., 735, 51 (2018)
  35. Choi H, Lee S, Eom K, Appl. Surf. Sci., 466, 578 (2019)
  36. Kim H, Kim M, Yoon YH, Nguyen QH, Kim IT, Hur J, Lee SG, Electrochim. Acta, 293, 8 (2019)
  37. Seo JU, Park CM, J. Mater. Chem. A, 2, 20075 (2014)
  38. Hwa Y, Sung JH, Wang B, Park CM, Sohn HJ, J. Mater. Chem., 22, 12767 (2012)
  39. Kim SO, Manthiram A, ACS Appl. Mater. Interfaces, 7, 14801 (2015)
  40. Nzabahimana J, Chang P, Hu XL, J. Mater. Sci., 54(6), 4798 (2019)
  41. Nguyen QH, Kim IT, Hur J, Electrochim. Acta, 297, 355 (2019)
  42. Nguyen QH, Choi JS, Lee YC, Kim IT, Hur J, Ind. Eng. Chem. Res., 69, 116 (2019)
  43. Choi JH, Ha CW, Choi HY, Lee SM, Ind. Eng. Chem. Res., 60, 451 (2018)
  44. Kim C, Verma D, Nam DH, Chang W, Kim J, Ind. Eng. Chem. Res., 52, 260 (2017)
  45. Scharf TW, Prasad SV, J. Mater. Sci., 48(2), 511 (2013)
  46. Cho MH, Ju J, Kim SJ, Jang H, Wear, 260, 855 (2006)
  47. Berman D, Erdemir A, Sumant AV, Carbon, 59, 167 (2013)
  48. Hai NQ, Kwon SH, Kim H, Kim IT, Lee SG, Hur J, Electrochim. Acta, 260, 129 (2018)
  49. Qin M, Li Y, Lv XJ, Nanomaterials, 7, 150 (2017)
  50. Zaghib K, Dontigny M, Perret P, Guerfi A, Ramanathan M, Prakash J, Mauger A, Julien CM, J. Power Sources, 248, 1050 (2014)
  51. Scrosati B, Garche J, J. Power Sources, 195(9), 2419 (2010)