화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.76, 355-365, August, 2019
Improvement of oxygen transfer capacity by migration of oxygen defects formed in CuxMg1?xFeyTi2?yOz particles
E-mail:,
This study focuses on the improvement of oxygen transfer capacity of CuxMg1-xFeyTi2-yOz particle which simultaneously inserted with Cu2+ and Fe3+ ions into the Mg1.0Ti2.0O5.0 Karroite. The prepared Cu0.5Mg0.5Fe1.0Ti1.0O4.5 particle was composed of a co-mixture of a cubic Mg2TiO4 inverse spinel and an orthorhombic Fe2TiO5 Karroite. The CH4 and CO gases were selectively adsorbed on the surfaces of Cu and Fe ions, respectively, suggested that during the CLC, the Cu2+ and Fe3+ components had more effect to the methane combustion reaction and carbon monoxide oxidation. The oxygen transfer capacities of the Cu0.5Mg0.5Fe1.0Ti1.0O4.5 in the H2/air and CH4-CO2/air redox systems exhibited 9.59 % and 6.37 %, respectively. The difference of 3.22% in two systems corresponded to the affection of Fe2+. This work eventually revealed that when the Cu2+ and Fe3+ ions were simultaneously inserted for the Mg1.0Ti2.0O5.0 Karroite, their coexistence can improve the oxygen carrier capacity by a rapid oxygen migration through oxygen vacancies formed in lattice.
  1. Zhao H, Han W, Dong F, Tang Z, J. Ind. Eng. Chem., 64, 194 (2018)
  2. Li H, Li K, Zhu X, Du Y, Wei Y, Zhai K, Wang H, J. Ind. Eng. Chem., 54, 126 (2017)
  3. Costa TR, Gayan P, Abad A, Labiano FG, de Diego LF, Melo DMA, Adanez J, Energy Procedia, 114, 334 (2017)
  4. He F, Linak WP, Deng S, Li F, Environ. Sci. Technol., 51, 2482 (2017)
  5. Kim KM, Kwak BS, Park NK, Lee TJ, Lee ST, Kang M, J. Ind. Eng. Chem., 46, 324 (2017)
  6. Do JY, Park NK, Lee TJ, Lee ST, Kang M, Int. J. Energy Res., 2, 1 (2017)
  7. Kim KM, Kwak BS, Im YH, Park NK, Lee TJ, Lee ST, Kang MS, J. Ind. Eng. Chem., 51, 140 (2017)
  8. Johansson M, Mattisson T, Lyngfelt A, Ind. Eng. Chem. Res., 43(22), 6978 (2004)
  9. Cao Y, Casenas B, Pan WP, Energy Fuels, 20(5), 1845 (2006)
  10. Shulman A, Cleverstam E, Mattisson T, Lyngfelt A, Energy Fuels, 23, 5269 (2009)
  11. Zeng D, Qiu Y, Peng S, Chen C, Zeng J, Zhang S, Xiao R, J. Mater. Chem. A., 6, 11306 (2018)
  12. Xu L, Edland R, Li ZS, Leion H, Zhao DM, Cai NS, Energy Fuels, 28(11), 7085 (2014)
  13. Keller M, Arjmand M, Leion H, Mattisson T, Chem. Eng. Res. Des., 92(9), 1753 (2014)
  14. Siriwardane R, Poston J, Chaudhari K, Zinn A, Simonyi T, Robinson C, Energy Fuels, 21(3), 1582 (2007)
  15. He F, Wang H, Dai Y, J. Nat. Gas Chem., 16, 155 (2007)
  16. Kwak BS, Park NK, Baek JI, Ryu HJ, Kang M, Powder Technol., 312, 237 (2017)
  17. Kwak BS, Park NK, Baek JI, Ryu HJ, Kang MS, Korean J. Chem. Eng., 34(7), 1936 (2017)
  18. Adanez J, de Diego LF, Garcia-Labiano F, Gayan P, Abad A, Palacios JM, Energy Fuels, 18(2), 371 (2004)
  19. Jin HG, Okamoto T, Ishida M, Ind. Eng. Chem. Res., 38(1), 126 (1999)
  20. Mei DF, Zhao HB, Ma ZJ, Yang WJ, Fang YF, Zheng CG, J. Fuel Chem. Technol., 41, 235 (2013)
  21. Kwak BS, Park NK, Ryu SO, Baek JI, Ryu HJ, Kang M, Chem. Eng. J., 309, 617 (2017)
  22. Corbella BM, Palacios JM, Fuel, 86(1-2), 113 (2007)
  23. Arjmand M, Azad AM, Leion H, Mattisson T, Lyngfelt A, Ind. Eng. Chem. Res., 51(43), 13924 (2012)
  24. Xiao R, Song QL, Song M, Lu ZJ, Zhang SA, Shen LH, Combust. Flame, 157(6), 1140 (2010)
  25. Leion H, Mattisson T, Lyngfelt A, Int. J. Greenh. Gas Control, 2, 180 (2008)
  26. Sharygin VV, Panina LI, Vladykin NV, Russ. Geol. Geophys., 39, 35 (1998)
  27. Zhang N, Zhang K, Zhou W, Jiang B, Pan K, Qu Y, Wang G, RSC Adv., 5, 106151 (2015)
  28. Guo WQ, Malus S, Ryan DH, Altounian Z, J. Phys. Condens. Matter, 11, 6337 (1999)
  29. Al-Muhtaseb AH, McMinn WAM, Magee TRA, J. Food Eng., 60, 297 (2004)
  30. Leng C, Hiltner J, Pham H, Kelley J, Mach M, Zhang Y, Liu Y, Phys. Chem. Chem. Phys., 16, 4350 (2014)
  31. Porrazzo R, White G, Ocone R, Faraday Discuss., 192, 437 (2016)
  32. Jerez JM, Chinarro E, Moreno B, Colomer MT, Jurado JR, Nunez P, Ceram. Int., 40, 3469 (2014)
  33. Vanysek P, Electrochemical Series, Handbook of Chemistry and Physics, 5, p.80 (1998).
  34. Li KZ, Wang H, Wei YG, Yan DX, Chem. Eng. J., 156(3), 512 (2010)
  35. Chiang CL, Lin KS, Int. J. Hydrog. Energy, 42(37), 23526 (2017)
  36. Qin L, Guo M, Cheng Z, Xu M, Liu Y, Xu D, Fan JA, Fan LS, J. Mater. Chem A, 5, 20153 (2017)
  37. Jo SW, Im Y, Do JY, Park NK, Lee TJ, Lee ST, Cha MS, Jeon MK, Kang M, Renew. Energy, 113, 248 (2017)
  38. Ashour SS, Bailie JE, Rochester CH, Thomson J, Hutchings GJ, J. Mol. Catal. A-Chem., 123, 65 (1997)
  39. Lei XL, Wu MS, Liu G, Xu B, Ouyang CY, J. Phys. Chem. A., 117, 8293 (2013)
  40. Adanez-Rubio I, Abad A, Gayan P, de Diego LF, Garcia-Labiano F, Adanez J, Fuel Process. Technol., 124, 104 (2014)
  41. Narushima T, Tsukamoto H, Yonezawa T, AIP Adv., 2, 042113 (2012)
  42. Hirano Y, Kasai Y, Sagata K, Kita Y, Bull. Chem. Soc. Jpn., 89, 1026 (2016)
  43. Thatikonda SK, Goswami D, Dobbidi P, Ceram. Int., 40, 1125 (2014)
  44. Tahir D, Tougaard S, J. Phys. Condens. Matter, 24, 175002 (2012)
  45. Xue M, Guo Q, J. Alloy. Compd., 598, 224 (2014)
  46. Bharti B, Kumar S, Lee HN, Kumar R, Sci. Rep., 6, 32355 (2016)
  47. Li J, Xu J, Huang J, CrystEngComm, 16, 375 (2014)