화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.76, 396-402, August, 2019
Improving self-discharge and anti-corrosion performance of Zn-air batteries using conductive polymer-coated Zn active materials
E-mail:
The corrosion and hydrogen evolution reactions of Zn anodes accelerate the self-discharge of a Zn-air battery. To suppress the corrosion reaction and improve the self-discharge behavior of a Zn-air battery, polyaniline (PANI) is synthesized with different amounts of 0.1 M sulfuric acid and coated on a Zn surface. The PANI-coated materials effectively suppress the corrosion reaction, and the Zn-air cells prepared with PANI-coated Zn materials exhibit enhanced self-discharge behavior. The specific discharge capacity after 24 h storage and capacity retention of Zn were 520.2 mA h/g and 74.4%, respectively. Whereas the PANI-coated Zn (100 ml sulfuric acid) shows 565.3 mA h/g of specific discharge capacity after 24 h storage, 75.8% corrosion inhibition efficiency and 96.9% capacity retention. Therefore, PANI-coated Zn materials are effective in suppressing the corrosion reaction and improving self-discharge behaviors in Zn-air batteries.
  1. Wu H, Jiang X, Ye Y, Yan C, Xie S, Miao S, Wang G, Bao X, J. Energy Chem., 26, 1181 (2017)
  2. Raccichini R, Varzi A, Passerini S, Scrosati B, Nat. Mater., 14(3), 271 (2015)
  3. Dutta S, J. Ind. Eng. Chem., 20(4), 1148 (2014)
  4. Kundu D, Talaie E, Duffort V, Nazar LF, Angew. Chem.-Int. Edit., 54, 3431 (2015)
  5. Kang SH, Jo YN, Prasanna K, Santhoshkumar P, Joe YC, Vediappan K, Gnanamuthu R, Lee CW, J. Ind. Eng. Chem., 71, 177 (2019)
  6. Fu J, Lee DU, Hassan FM, Yang L, Bai ZY, Park MG, Chen ZW, Adv. Mater., 27(37), 5617 (2015)
  7. Lee J, Kim ST, Cao R, Choi N, Liu M, Lee KT, Adv. Eng. Mater., 1, 34 (2011)
  8. Jo YN, Prasanna K, Kang SH, Ilango PR, Kim HS, Eom SW, Lee CW, J. Ind. Eng. Chem., 53, 247 (2017)
  9. Fu J, Cano ZP, Park MG, Yu A, Fowler M, Chen Z, Adv. Mater., 29 (2017)
  10. Agubra VA, Zuniga L, Flores D, Villareal J, Alcoutlabi M, Electrochimica Acta., 192, 529 (2016)
  11. Mokhtar M, Talib MZM, Majlan EH, Tasirin SM, Ramli WMFW, Daud WRW, Sahari J, J. Ind. Eng. Chem., 32, 1 (2015)
  12. Guo H, Luo W, Chen J, Chou S, Liu H, Wang J, Adv. Sustainable Syst., 2, 170018 (2018)
  13. Li N, Wei W, Xie K, Tan J, Zhang L, Luo X, Yuan K, Song Q, Li H, Shen C, Nano Lett., 18, 2067 (2018)
  14. Li Y, Gong M, Liang Y, Feng J, Kim J, Wang H, Hong G, Zhang B, Dai H, Nat. commun., 4, 1805 (2013)
  15. Ganesan P, Ramakrishnan P, Prabu M, Shanmugam S, Electrochimica Acta., 183, 63 (2015)
  16. Pei PC, Wang KL, Ma Z, Appl. Energy, 128, 315 (2014)
  17. Park JE, Lim MS, Kim JK, Choi HJ, Sung YE, Cho YH, J. Ind. Eng. Chem., 69, 161 (2019)
  18. Chen Y, Wang H, Ji S, Pollet BG, Wang R, J. Ind. Eng. Chem., 71, 284 (2019)
  19. Sapkota P, Kim H, J. Ind. Eng. Chem., 16(1), 39 (2010)
  20. Kim H, Jeong G, Kim Y, Kim J, Park C, Sohn H, Chem. Soc. Rev., 42, 9011 (2013)
  21. Besenhard JO, Handbook of battery materials, John Wiley & Sons, 2008.
  22. Riede J, Turek T, Kunz U, Electrochimica Acta., 269, 217 (2018)
  23. Gan W, Zhou D, Zhou L, Zhang Z, Zhao J, Electrochimica Acta., 182, 430 (2015)
  24. Perez MG, O'Keefe MJ, O'Keefe T, Ludlow D, J. Appl. Electrochem., 37(2), 225 (2007)
  25. Nartey V, Binder L, Kordesch K, J. Power Sources, 52, 217 (1994)
  26. Youssef KMS, Koch CC, Fedkiw PS, Corrosion Sci., 46, 51 (2004)
  27. Jo YN, Kim HS, Prasanna K, Ilango PR, Lee WJ, Eom SW, Lee CW, Ind. Eng. Chem. Res., 53(44), 17370 (2014)
  28. Chakkaravarthy C, Waheed AKA, Udupa HVK, J. Power Sources, 6, 203 (1981)
  29. Lee SM, Kim YJ, Eom SW, Choi NS, Kim KW, Cho SB, J. Power Sources, 227, 177 (2013)
  30. Caramia V, Bozzini B, Mater. Renewable Sustainable Energy, 3, 1 (2014)
  31. Zhang XG, Corrosion and electrochemistry of zinc, Springer Science & Business Media, 2013.
  32. Youssef KM, Koch C, Fedkiw P, Corrosion Sci., 46, 51 (2004)
  33. Tao H, Tong X, Gan L, Zhang S, Zhang X, Liu X, J. Alloy. Compd., 658, 119 (2016)
  34. Li X, Liang M, Zhou H, Huang Q, Lv D, Li W, Bull. Korean Chem. Soc., 33, 1567 (2012)
  35. Kannan AS, Muralidharan S, Sarangapani K, Balaramachandran V, Kapali V, J. Power Sources, 57, 93 (1995)
  36. Lee CW, Sathiyanarayanan K, Eom SW, Yun MS, J. Power Sources, 160(2), 1436 (2006)
  37. Lee CW, Sathiyanarayanan K, Eom SW, Yun MS, Mater. Sci. Forum, 539, 1427 (2007)
  38. Li D, Huang J, Kaner RB, Accounts Chem. Res., 42, 135 (2008)
  39. Li M, Guo Y, Wei Y, MacDiarmid AG, Lelkes PI, Biomaterials, 27, 2705 (2006)
  40. Wessling B, Synth. Met., 93, 143 (1998)
  41. Huang J, Pure Appl. Chem., 78, 15 (2006)
  42. Diaz A, Logan J, J. Electroanalytical Chem. Interfacial Electrochem., 111, 111 (1980)
  43. Macdiarmid AG, Chiang J, Halpern M, Huang W, Mu S, Nanaxakkara L, Wu SW, Yaniger SI, Mol. Cryst. Liq. Cryst., 121, 173 (1985)
  44. MacDiarmid AG, Epstein AJ, Faraday Discuss. Chem. Soc., 88, 317 (1989)
  45. Abdiryim T, Xiao-Gang Z, Jamal R, Mater. Chem. Phys., 90(2-3), 367 (2005)
  46. Kulkarni MV, Viswanath AK, Marimuthu R, Seth T, Polymer Eng. Sci., 44, 1676 (2004)
  47. Wu F, Chen J, Li L, Zhao T, Chen R, J. Phys. Chem. C., 115, 24411 (2011)
  48. Kulkarni MV, Viswanath AK, Marimuthu R, Seth T, Polymer Eng. Sci., 44, 1676 (2004)
  49. Vivekanandan J, Ponnusamy V, Mahudeswaran A, Vijayanand P, Arch. Appl. Sci. Res., 3, 147 (2011)
  50. Liu H, Hu XB, Wang JY, Boughton RI, Macromolecules, 35(25), 9414 (2002)
  51. El-Sayed AR, Mohran HS, El-Lateef HMA, J. Power Sources, 195(19), 6924 (2010)
  52. Li D, Conway PP, Liu C, Corrosion Sci., 50, 995 (2008)
  53. Jo YN, Kang SH, Prasanna K, Eom SW, Lee CW, Appl. Surf. Sci., 422, 406 (2017)