화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.76, 437-442, August, 2019
The characteristics of Cu(In, Ga)Se2 thin-film solar cells by bandgap grading
E-mail:,
We investigated the characteristics of Cu(In, Ga)Se2 solar cells with bandgap (Eg) grading. Two precursor types were employed: Mo/Cu0.75Ga0.25/In/Ga2Se3 (CIGSe-1) and Mo/Cu/In/Ga2Se3 (CIGSe 2). In CIGSe-1, the range of depths with a high Ga content is wider than that in CIGSe-2; thus, the region in which the main electron-trapping clusters and high-population deep donor defects can form is larger, and the defect density is higher. In the defect energy level range, various other defects and defect clusters exist with a defect density of 2.83 x 10 15cm-3 within the CIGS-1 absorber layer and 2.37 x 10 15cm-3 within the CIGS-2 absorber layer. The average efficiency values are 5.71% for CIGSe-1 and 6.82% for CIGSe-2. Additionally, the average VOC deficit (Eg/q - VOC) values are 0.758 V for CIGSe-1 and 0.731 V for CIGSe-2. As a result, in the 7 CIGSe-2 samples, the open-circuit voltage and efficiencies are improved. Thus, it is demonstrated that appropriate Eg grading in a CIGSe layer with a wider Eg on the back surface can result in improved performance.
  1. Ramanujam J, Singh UP, Energy Environ. Sci., 10, 1306 (2017)
  2. Kamada R, Yagioka T, Adachi S, Handa A, Tai KF, Kato T, Sugimoto H, IEEE 43rd Photovoltaic Specialists Conference, pp.1287 (2016).
  3. Kato T, Wu JL, Hirai Y, Sugimoto H, Bermudez V, IEEE J. Photovoltaics, 9, 325 (2019)
  4. Polizzotti, Repins IL, Noufi R, Wei SH, Mitzi DB, Energy Environ. Sci., 6, 3171 (2013)
  5. Huang B, Chen S, Deng HX, Wang LW, IEEE J. Photovoltaics, 4, 477 (2014)
  6. Park JS, Kim S, Xie Z, Walsh A, Nat. Rev., 3, 194 (2018)
  7. Igalson M, Urbaniak A, Bull. Pol. Ac. Tech., 53, 157 (2005)
  8. Pohl J, Albe K, Phys. Rev. B, 87, 245203 (2013)
  9. Chen S, Walsh A, Gong XG, Hei SH, Adv. Eng. Mater., 25, 1522 (2013)
  10. Gloeckler M, Sites JR, J. Phys. Chem. Sol., 66, 1891 (2005)
  11. Song J, Li SS, Huang CH, Crisalle OD, Anderson TJ, Sol. State Electron., 48, 73 (2004)
  12. Contreras MA, Tuttle J, Gabor A, Tennant A, Ramanathan K, Asher S, Franz A, Keane J, Wang L, Scofield J, Noufi R, 1st WCPEC, 68 (1994).
  13. Troviano M, Taretto K, Sol. Energy Mater. Sol. Cells, 95(3), 821 (2011)
  14. Morales-Acevedo A, Sol. Energy Mater. Sol. Cells, 93(1), 41 (2009)
  15. Lundberg O, Edoff M, Stolt L, Thin Solid Films, 480-481, 520 (2005)
  16. Jackson P, Wuerz R, Hariskos D, Lotter E, Witte W, Powalla M, Phys. Status Solidi RRL, 10, 583 (2016)
  17. Friedlmeier TM, Jackson P, Bauer A, Hariskos D, Kiowski O, Wuerz R, Powalla M, IEEE J. Photovoltaics, 5, 1487 (2015)
  18. Ward JS, Egaas B, Noufi R, Contreras M, Ramanathan K, Osterwald C, Emery K, IEEE 40th Photovoltaic Specialist Conference (PVSC), pp.2934 (2014).
  19. Merdes S, Ziem F, Lavrenko T, Walter T, Lauermann I, Klingsporn M, Schmidt S, Hergert F, Schlatmann R, Prog. Photovoltaics: Res. Appl., 23, 1493 (2015)
  20. Schmidt SS, Wolf C, Rodriguez-Alvarez H, Backer JP, Kaufmann CA, et al., Prog. Photovoltaics: Res. Appl., 25, 341 (2017)
  21. Wu TT, Chang CH, Hsu CH, Tsai WC, Tsai HS, Yen YT, Shen CH, Shieh JM, Chueh YL, Nano Energy, 25, 45 (2016)
  22. Song YJ, Kang JY, Baek GY, Bae JA, Yang SH, Jeon CW, Prog. Photovoltaics: Res. Appl., 26, 223 (2018)
  23. Wu TT, Hu F, Huang JH, Chang CH, Lai CC, Yen YT, Huang HY, Hong HF, Wang ZM, Shen CH, Shieh JM, Chueh YL, ACS Appl. Mater. Interfaces, 6, 4842 (2014)
  24. Chen SC, Wang SW, Kuo SY, Juang JY, Lee PT, Luo CW, Wu KH, Kuo HC, Nanoscale Res. Lett., 12, 208 (2017)
  25. Cheng K, Han K, Kuang Z, Jin R, Hu J, Guo L, Liu Y, Lu Z, Du Z, J. Electron. Mater., 46, 2512 (2017)
  26. Wua TT, Huang JH, Hu F, Chang CH, Liu WL, Wang TH, Shen CH, Shieh JM, Chueh YL, Nano Energy, 10, 28 (2014)
  27. Zhang Y, Bartolo RE, Kwon SJ, Dagenais M, IEEE J. Photovoltaics, 7, 676 (2017)
  28. Jung S, Ahn S, Yun JH, Gwak J, Kim D, Yoon K, Curr. Appl. Phys., 10(4), 990 (2010)
  29. Lundberg O, Lu J, Rockett A, Edoff M, Stolt L, J. Phys. Chem. Solids, 64, 1499 (2003)
  30. Jensen CL, Tarrant DE, Ermer JH, Pollock GA, 23rd IEEE Photovoltaic Specialists Conference, pp.577 (1993).
  31. Mungan ES, Wang X, Alam MA, IEEE J. Photovoltaics, 3, 451 (2013)
  32. Zhao D, Fan Q, Tian Q, Zhou Z, Meng Y, Kou D, Zhou W, Wu S, J. Mater. Chem. A, 4, 13476 (2016)
  33. Zhou H, Hsu WC, Duan HS, Bob B, Yang W, Song TB, Hsu CJ, Yang Y, Energy Environ. Sci., 6, 2822 (2013)
  34. Uhl AR, Fuchs P, Rieger A, Pianezzi F, Sutter-Fella CM, Kranz L, Keller D, et al., Prog. Photovoltaics: Res. Appl., 23, 1110 (2015)
  35. Shafarman WN, Klenk R, McCandless BE, J. Appl. Phys., 79, 7324 (1996)
  36. Wei SH, Zhang SB, Zunger A, Appl. Phys. Lett., 72, 3199 (1998)
  37. Duan HS, Yang WB, Bob B, Hsu CJ, Lei B, Yang Y, Adv. Funct. Mater., 23(11), 1466 (2013)
  38. Hanna G, Jasenek A, Rau U, Schock HW, Phys. Stat. Sol., 179, R7 (2000)
  39. Yang KJ, Kim S, Sim JH, Son DH, Kim DH, Kim J, Jo W, Yoo H, Kim J, Kang JK, Nano Energy, 52, 38 (2018)
  40. Hegedus SS, Shafarman WN, Prog. Photovoltaics: Res. Appl., 12, 155 (2004)
  41. Herberholz R, Igalson M, Schock HW, J. Appl. Phys., 83, 318 (1998)
  42. Wei SH, Zhang SB, J. Phys. Chem. Solids, 66, 1994 (2005)
  43. Rau U, Schock HW, Appl. Phys. A-Mater. Sci. Process., 69, 131 (1999)
  44. Wang K, Gunawan O, Todorov T, Shin B, Chey SJ, Bojarczuk NA, Mitzi D, Guha S, Appl. Phys. Lett., 97, 143508 (2010)
  45. Hall RN, Phys. Rev., 87, 387 (1952)
  46. Chen S, Walsh A, Yang JH, Gong XG, Sun L, Yang PX, Chu JH, Wei SH, Phys. Rev. B, 83, 125201 (2011)