Journal of Industrial and Engineering Chemistry, Vol.76, 437-442, August, 2019
The characteristics of Cu(In, Ga)Se2 thin-film solar cells by bandgap grading
E-mail:,
We investigated the characteristics of Cu(In, Ga)Se2 solar cells with bandgap (Eg) grading. Two precursor types were employed: Mo/Cu0.75Ga0.25/In/Ga2Se3 (CIGSe-1) and Mo/Cu/In/Ga2Se3 (CIGSe 2). In CIGSe-1, the range of depths with a high Ga content is wider than that in CIGSe-2; thus, the region in which the main electron-trapping clusters and high-population deep donor defects can form is larger, and the defect density is higher. In the defect energy level range, various other defects and defect clusters exist with a defect density of 2.83 x 10 15cm-3 within the CIGS-1 absorber layer and 2.37 x 10 15cm-3 within the CIGS-2 absorber layer. The average efficiency values are 5.71% for CIGSe-1 and 6.82% for CIGSe-2. Additionally, the average VOC deficit (Eg/q - VOC) values are 0.758 V for CIGSe-1 and 0.731 V for CIGSe-2. As a result, in the 7 CIGSe-2 samples, the open-circuit voltage and efficiencies are improved. Thus, it is demonstrated that appropriate Eg grading in a CIGSe layer with a wider Eg on the back surface can result in improved performance.
- Ramanujam J, Singh UP, Energy Environ. Sci., 10, 1306 (2017)
- Kamada R, Yagioka T, Adachi S, Handa A, Tai KF, Kato T, Sugimoto H, IEEE 43rd Photovoltaic Specialists Conference, pp.1287 (2016).
- Kato T, Wu JL, Hirai Y, Sugimoto H, Bermudez V, IEEE J. Photovoltaics, 9, 325 (2019)
- Polizzotti, Repins IL, Noufi R, Wei SH, Mitzi DB, Energy Environ. Sci., 6, 3171 (2013)
- Huang B, Chen S, Deng HX, Wang LW, IEEE J. Photovoltaics, 4, 477 (2014)
- Park JS, Kim S, Xie Z, Walsh A, Nat. Rev., 3, 194 (2018)
- Igalson M, Urbaniak A, Bull. Pol. Ac. Tech., 53, 157 (2005)
- Pohl J, Albe K, Phys. Rev. B, 87, 245203 (2013)
- Chen S, Walsh A, Gong XG, Hei SH, Adv. Eng. Mater., 25, 1522 (2013)
- Gloeckler M, Sites JR, J. Phys. Chem. Sol., 66, 1891 (2005)
- Song J, Li SS, Huang CH, Crisalle OD, Anderson TJ, Sol. State Electron., 48, 73 (2004)
- Contreras MA, Tuttle J, Gabor A, Tennant A, Ramanathan K, Asher S, Franz A, Keane J, Wang L, Scofield J, Noufi R, 1st WCPEC, 68 (1994).
- Troviano M, Taretto K, Sol. Energy Mater. Sol. Cells, 95(3), 821 (2011)
- Morales-Acevedo A, Sol. Energy Mater. Sol. Cells, 93(1), 41 (2009)
- Lundberg O, Edoff M, Stolt L, Thin Solid Films, 480-481, 520 (2005)
- Jackson P, Wuerz R, Hariskos D, Lotter E, Witte W, Powalla M, Phys. Status Solidi RRL, 10, 583 (2016)
- Friedlmeier TM, Jackson P, Bauer A, Hariskos D, Kiowski O, Wuerz R, Powalla M, IEEE J. Photovoltaics, 5, 1487 (2015)
- Ward JS, Egaas B, Noufi R, Contreras M, Ramanathan K, Osterwald C, Emery K, IEEE 40th Photovoltaic Specialist Conference (PVSC), pp.2934 (2014).
- Merdes S, Ziem F, Lavrenko T, Walter T, Lauermann I, Klingsporn M, Schmidt S, Hergert F, Schlatmann R, Prog. Photovoltaics: Res. Appl., 23, 1493 (2015)
- Schmidt SS, Wolf C, Rodriguez-Alvarez H, Backer JP, Kaufmann CA, et al., Prog. Photovoltaics: Res. Appl., 25, 341 (2017)
- Wu TT, Chang CH, Hsu CH, Tsai WC, Tsai HS, Yen YT, Shen CH, Shieh JM, Chueh YL, Nano Energy, 25, 45 (2016)
- Song YJ, Kang JY, Baek GY, Bae JA, Yang SH, Jeon CW, Prog. Photovoltaics: Res. Appl., 26, 223 (2018)
- Wu TT, Hu F, Huang JH, Chang CH, Lai CC, Yen YT, Huang HY, Hong HF, Wang ZM, Shen CH, Shieh JM, Chueh YL, ACS Appl. Mater. Interfaces, 6, 4842 (2014)
- Chen SC, Wang SW, Kuo SY, Juang JY, Lee PT, Luo CW, Wu KH, Kuo HC, Nanoscale Res. Lett., 12, 208 (2017)
- Cheng K, Han K, Kuang Z, Jin R, Hu J, Guo L, Liu Y, Lu Z, Du Z, J. Electron. Mater., 46, 2512 (2017)
- Wua TT, Huang JH, Hu F, Chang CH, Liu WL, Wang TH, Shen CH, Shieh JM, Chueh YL, Nano Energy, 10, 28 (2014)
- Zhang Y, Bartolo RE, Kwon SJ, Dagenais M, IEEE J. Photovoltaics, 7, 676 (2017)
- Jung S, Ahn S, Yun JH, Gwak J, Kim D, Yoon K, Curr. Appl. Phys., 10(4), 990 (2010)
- Lundberg O, Lu J, Rockett A, Edoff M, Stolt L, J. Phys. Chem. Solids, 64, 1499 (2003)
- Jensen CL, Tarrant DE, Ermer JH, Pollock GA, 23rd IEEE Photovoltaic Specialists Conference, pp.577 (1993).
- Mungan ES, Wang X, Alam MA, IEEE J. Photovoltaics, 3, 451 (2013)
- Zhao D, Fan Q, Tian Q, Zhou Z, Meng Y, Kou D, Zhou W, Wu S, J. Mater. Chem. A, 4, 13476 (2016)
- Zhou H, Hsu WC, Duan HS, Bob B, Yang W, Song TB, Hsu CJ, Yang Y, Energy Environ. Sci., 6, 2822 (2013)
- Uhl AR, Fuchs P, Rieger A, Pianezzi F, Sutter-Fella CM, Kranz L, Keller D, et al., Prog. Photovoltaics: Res. Appl., 23, 1110 (2015)
- Shafarman WN, Klenk R, McCandless BE, J. Appl. Phys., 79, 7324 (1996)
- Wei SH, Zhang SB, Zunger A, Appl. Phys. Lett., 72, 3199 (1998)
- Duan HS, Yang WB, Bob B, Hsu CJ, Lei B, Yang Y, Adv. Funct. Mater., 23(11), 1466 (2013)
- Hanna G, Jasenek A, Rau U, Schock HW, Phys. Stat. Sol., 179, R7 (2000)
- Yang KJ, Kim S, Sim JH, Son DH, Kim DH, Kim J, Jo W, Yoo H, Kim J, Kang JK, Nano Energy, 52, 38 (2018)
- Hegedus SS, Shafarman WN, Prog. Photovoltaics: Res. Appl., 12, 155 (2004)
- Herberholz R, Igalson M, Schock HW, J. Appl. Phys., 83, 318 (1998)
- Wei SH, Zhang SB, J. Phys. Chem. Solids, 66, 1994 (2005)
- Rau U, Schock HW, Appl. Phys. A-Mater. Sci. Process., 69, 131 (1999)
- Wang K, Gunawan O, Todorov T, Shin B, Chey SJ, Bojarczuk NA, Mitzi D, Guha S, Appl. Phys. Lett., 97, 143508 (2010)
- Hall RN, Phys. Rev., 87, 387 (1952)
- Chen S, Walsh A, Yang JH, Gong XG, Sun L, Yang PX, Chu JH, Wei SH, Phys. Rev. B, 83, 125201 (2011)