- Previous Article
- Next Article
- Table of Contents
Journal of Industrial and Engineering Chemistry, Vol.76, 524-531, August, 2019
Agglomeration of Li(NixMnyCoz)O2 particles in Couette-Taylor flow reactor
E-mail:
Couette-Taylor flow reactor is a mixing device that offers wide range of mixing regimes within a single reactor and operates in continuous flow mode. This reactor is recently used in manufacturing the cathode material of lithium ion batteries. Here, we simulate the agglomeration process of Li(NixMnyCoz)O2 particles using computational fluid dynamics. Quadrature method of moments is implemented for modeling of aggregation and breakage in Couette-Taylor flow reactor. We conduct an experiment of the preparation of Li(NixMnyCoz)O2 precursors, and the experimental data are compared with simulated results for the validation of numerical model. The predicted evolutions of mean particle size are well agreed with experimental data. For the practical application, we investigate the effects of density ratio of particle to fluid and initial volume fraction of particles on the particle size. The results show that the particle diameter increases with increasing of density ratio, but it decreases with increasing of initial volume fraction of particles. On the other hand, the particle sizes become similar at high rotational speed.
Keywords:Couette-Taylor flow reactor;Computational fluid dynamics;Quadrature method of moments;Aggregation and breakage;Li(NixMnyCoz)O2 particle
- Jung WM, Kang SH, Kim WS, Choi CK, Chem. Eng. Sci., 55(4), 733 (2000)
- Wang LG, Olsen MG, Vigil RD, Chem. Eng. Sci., 60(20), 5555 (2005)
- Wardle K, Lee T, Comput. Math. Appl., 65, 230 (2013)
- Wang L, Marchisio DL, Vigil RD, Fox RO, J. Colloid Interface Sci., 282(2), 380 (2005)
- Nguyen AT, Kim JM, Chang SM, Kim WS, Ind. Eng. Chem. Res., 49(10), 4865 (2010)
- Park K, Yang DR, IFAC ADCHEM, 48(8), 321 (2015)
- Lee SH, Jeon DH, Trans. Korean Soc. Mech. Eng. B, 40(6), 365 (2016)
- Zhang S, Electrochim. Acta, 52(25), 7337 (2007)
- Andersson AM, Abraham DP, Haasch R, MacLaren S, Liu J, Amine K, J. Electrochem. Soc., 149(10), A1358 (2002)
- Amine K, Chen CH, Liu J, Hammond M, Jansen A, Dees D, Bloom I, Vissers D, Henriksen G, J. Power Sources, 684, 97 (2001)
- Todorov YM, Numata K, Electrochim. Acta, 50(2-3), 495 (2004)
- Levasseur S, Menetrier M, Delmas C, J. Electrochem. Soc., 149(12), A1533 (2002)
- Luo XF, Wang XY, Liao L, Gamboa S, Sebastian PJ, J. Power Sources, 158(1), 654 (2006)
- Marchisio DL, Soos M, Sefcik J, Morbidelli M, AIChE J., 52(1), 158 (2006)
- Cheng JC, Yang C, Mao ZS, Zhao CJ, Ind. Eng. Chem. Res., 48(15), 6992 (2009)
- Serra T, Colomer J, Casamitjana X, J. Colloid Interface Sci., 187(2), 466 (1997)
- Lemanowicz M, Al-Rashed MH, Gierczycki AT, Kocureka J, Chem. Biochem. Eng. Q., 23(2), 143 (2009)
- Wang LG, Vigil RD, Fox RO, J. Colloid Interface Sci., 285(1), 167 (2005)
- Marchisio DL, Vigil RD, Fox RO, Chem. Eng. Sci., 58(15), 3337 (2003)
- Marchisio DL, Soos M, Sefcik J, Morbidelli M, Barresi AA, Baldi G, Chem. Eng. Technol., 29(2), 191 (2006)
- Soos M, Wang L, Fox RO, Sefcik J, Morbidelli M, J. Colloid Interface Sci., 307(2), 433 (2007)
- Ying JR, Wan CR, Jiang CY, Li YX, J. Power Sources, 99(1-2), 78 (2001)
- Park SH, Kang SH, Belharouak I, Sun YK, Amine K, J. Power Sources, 177(1), 177 (2008)
- Zhang XY, Jiang WJ, Mauger A, Qilu, Gendron F, Julien CM, J. Power Sources, 195(5), 1292 (2010)
- ANSYS Inc, Fluent 15.0 Theory Manual, (2013).
- Gimbun J, Nagy ZK, Rielly CD, Ind. Eng. Chem. Res., 48(16), 7798 (2009)
- Claudotte L, Rimbert N, Gardin P, Simonnet M, Lehmann J, Oesterle B, AIChE J., 56(9), 2347 (2010)
- Lueptow RM, Docter A, Min K, Phys. Fluids A, 4, 2446 (1992)
- Lewis GS, Swinney HL, Phys. Rev. E, 59, 5457 (1999)
- Kim JM, Chang SM, Chang JH, Kim WS, A Physicochem. Eng. Asp., 384, 31 (2011)
- Serra T, Casamitjana X, AIChE J., 44(8), 1724 (1998)