화학공학소재연구정보센터
Macromolecular Research, Vol.27, No.7, 679-685, July, 2019
raphene Oxide Nanosheet-Composited Poly(N-isopropylacrylamide) Hydrogel for Cell Sheet Recovery
E-mail:
Cell sheet engineering technique has been applied to treat various tissues without the use of a traditional scaffold. To date, methods for the cell sheet harvesting depend mostly on grafted poly(N-isopropylacrylamide) (pNIPAAm) thin layers, while the native pNIPAAm hydrogel, which possibly presents the easiest way to prepare thermo-responsive materials, is not suitable for the cell sheet harvesting due to its low cell attachment. In this study, the graphene oxide (GO) nanosheet was utilized as an additive to enhance the bio-compatibility of the pNIPAAm hydrogel. Different concentrations of GO nanosheets were added to prepare GO/pNIPAAm composite hydrogels through the in-situ free radical polymerization with polyethylene glycol dimethacrylate (PEGDA) as a cross-linker. The results indicated that the physical properties of the composite hydrogels had little difference with that of the native pNIPAAm hydrogel. However, the cell attachment, proliferation and detachment behaviors on the composite hydrogel surface were greatly enhanced. Monkey fibroblast COS7 cells attached and proliferated better on the GO/pNIPAAm composite hydrogel, while intact COS7 cell sheets could be harvested from the composite hydrogels by simply lowering the temperature. In contrast, the cells appeared as clusters on the native pNIPAAm hydrogel. Furthermore, when HeLa and COS7 cells were seeded successively onto the micropatterned GO/pNIPAAm hydrogel, there could be the formation of a patterned HeLa/COS7 cell layer. The geometrically patterned GO/pNIPAAm hydrogel may provide an easy-to-prepare material for releasing patterned cell sheets compared to the specific cell-adhesive proteins reported to make patterned cell layers.
  1. Langer R, Vacanti J, Science, 260, 920 (1993)
  2. Sakaguchi K, Shimizu T, Okano T, J. Control. Release, 205, 83 (2015)
  3. Takahashi H, Shimizu T, Nakayama M, Yamato M, Okano T, Biomaterials, 34, 7372 (2013)
  4. Yaji N, Yamato M, Yang J, Okano T, Hori S, Biomaterials, 30, 797 (2009)
  5. Sudo Y, Sakai H, Nabae Y, Hayakawa T, Kakimoto M, Polymer, 70, 307 (2015)
  6. Fukumori K, Akiyama Y, Kumashiro Y, Kobayashi J, Yamato M, Sakai K, Okano T, Macromol. Biosci., 10, 1117 (2010)
  7. Chumakov MK, Shahamat L, Weaver A, LeBlanc J, Chaychian M, Silverman J, Richter KB, Weiss D, Al-Sheikhly M, Radiat. Phys. Chem., 80, 182 (2011)
  8. Huang YW, Zeng M, Ren J, Wang J, Fan LR, Xu QY, Colloids Surf. A: Physicochem. Eng. Asp., 401, 97 (2012)
  9. Rayatpisheh S, Li P, Chan-Park MB, Macromol. Biosci., 12, 937 (2012)
  10. Bluestein BM, Reed JA, Canavan HE, Appl. Surf. Sci., 392, 950 (2017)
  11. Patel NG, Cavicchia JP, Zhang G, Newby BMZ, Acta Biomater., 8, 2559 (2012)
  12. Nash ME, Healy D, Carroll WM, Elvira C, Rochev YA, J. Mater. Chem., 22, 19376 (2012)
  13. Takahashi H, Matsuzaka N, Nakayama M, Kikuchi A, Yamato M, Okano T, Biomacromolecules, 13(1), 253 (2012)
  14. Sudo Y, Kawai R, Sakai H, Kikuchi R, Nabae Y, Hayakawa T, Kakimoto MA, Langmuir, 34(2), 653 (2018)
  15. Cooperstein MA, Bluestein BM, Canavan HE, Biointerphases, 10, 019001 (2015)
  16. Schmidt S, Zeiser M, Hellweg T, Duschl C, Fery A, Mohwald H, Adv. Funct. Mater., 20(19), 3235 (2010)
  17. Xia YQ, Tang Y, He XL, Pan F, Li ZY, Xu H, Lu JR, Biomacromolecules, 17(2), 572 (2016)
  18. Xia YQ, He XL, Cao MW, Chen CX, Xu H, Pan F, Lu JR, Biomacromolecules, 14(10), 3615 (2013)
  19. Chen YS, Tsou PC, Lo JM, Tsai HC, Wang YZ, Hsiue GH, Biomaterials, 34, 7328 (2013)
  20. Haraguchi K, Takehisa T, Ebato M, Biomacromolecules, 7(11), 3267 (2006)
  21. Wang JY, Chen L, Zhao YP, Guo G, Zhang R, J. Mater. Sci. -Mater. Med., 20, 583 (2009)
  22. Lim J, Jun I, Lee YB, Kim EM, Shin D, Jeon H, Park H, Shin H, Macromol. Res., 24(6), 562 (2016)
  23. Gurunathan S, Kim JH, Int. J. Nanomed., 11, 1927 (2016)
  24. Xu M, Zhu J, Wang F, Xiong Y, Wu Y, Wang Q, Weng J, Zhang Z, Chen W, Liu S, ACS Nano, 10, 3267 (2016)
  25. Liu XF, Miller AL, Park S, Waletzki BE, Terzic A, Yaszemski MJ, Lu LC, J. Mater. Chem. B, 4, 6930 (2016)
  26. Chen JR, Shi XT, Ren L, Wang YJ, Carbon, 111, 18 (2017)
  27. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS, Carbon, 45, 1558 (2007)
  28. Tse JR, Engler AJ, Plos One, 6, e15978 (2011)
  29. Yeung T, Georges PC, Flanagan LA, Marg B, Ortiz M, Funaki M, Zahir N, Ming WY, Weaver V, Janmey PA, Cell Motil. Cytoskeleton, 60, 24 (2005)
  30. Fukuda J, Khademhosseini A, Yeh J, Eng G, Cheng JJ, Farokhzad OC, Langer R, Biomaterials, 27, 1479 (2006)
  31. Hannachi IE, Itoga K, Kumashiro Y, Kobayashi J, Yamato M, Okano T, Biomaterials, 30, 5427 (2009)