화학공학소재연구정보센터
Polymer(Korea), Vol.43, No.4, 612-620, July, 2019
메타크릴레이트기가 접목된 셀룰로오스 나노결정 충전제를 이용한 Thiol-ene 자외선 경화 나노복합체 제조 및 물성에 대한 연구
Preparation and Properties of Thiol-ene UV-cured Nanocomposites with Methacrylate-grafted Cellulose Nanocrystals as Fillers
E-mail:
초록
본 연구에서는 3-methacryloxypropyltrimethoxysilane(MPTMS) 실란 커플링제를 사용하여 자유 라디칼 중합이 가능한 메타크릴레이트(methacrylate)기를 셀룰로오스 나노결정(cellulose nanocrystal, CNC) 표면에 도입하였다. 위 MPTMS로 개질된 CNC(MPTMS-CNC)를 충전제로 사용하여 자외선 경화가 가능한 수지를 사용하여 thiol-ene 단계 성장 광중합법으로 나노복합체를 제조하는 연구를 수행하였다. 순수 CNC 및 MPTMS-CNC 충전제들이 나노복합체의 열안정성, 인장강도 및 탄성률 등 물성에 미치는 영향을 푸리에 변환 적외선 분광기(FTIR), 열중량분석기(TGA), 만능재료시험기(UTM), 동적기계적분석기(DMA) 및 주사전자현미경(FE-SEM)을 사용하여 분석하였다. MPTMS-CNC 충전제는 CNC보다 나노복합체의 인장강도와 탄성률을 더 많이 증가시키는 것을 확인하였다.
In this study, we grafted free radical polymerizable methacrylate groups on the surface of cellulose nanocrystals (CNCs) using 3-methacryloxypropyltrimethoxysilane (MPTMS) as a silane coupling agent. We prepared nanocomposites using pristine CNCs and MPTMS modified CNCs (MPTMS-CNCs) as fillers in UV-curable resin by thiol-ene step-growth photopolymerization. The effects of pristine CNC and MPTMS-CNC fillers on thermal stability, tensile strength, elastic modulus, and dispersion state of fillers in nanocomposites were measured by Fourier transform infrared spectrometer (FTIR), thermogravimetric analyzer (TGA), universal testing machine (UTM), dynamic mechanical analyzer (DMA), and field emission scanning electron microscope (FE-SEM). The MPTMS-CNC filler was more effective in increasing tensile strength and elastic modulus of nanocomposites than CNC.
  1. Jarvis M, Nature, 426, 611 (2003)
  2. Tsekos I, Orologas N, Herth W, Phycology, 38, 217 (1999)
  3. Jandura P, Riedl B, Kokta BV, Polym. Degrad. Stabil., 70, 387 (2000)
  4. Ryu JH, Lee JK, Yoon J, J. Korea Tech. Assoc. Pulp Pap. Ind., 29, 33 (2010)
  5. Kwond OK, Shin SJ, J. Korea TAPPI, 48, 5 (2016)
  6. Yong SM, Kwak GH, Cho BU, Lee YK, Won JM, J. Korea TAPPI, 47, 61 (2015)
  7. Nickerson RF, Habrle JA, Ind. Eng. Chem., 37, 1507 (1947)
  8. Kang HM, Shin YH, Kim DS, Polym. Korea, 42(4), 649 (2018)
  9. Taipina MOD, Ferrarezi MMF, Yoshida IVP, Goncalves MDC, Cellulose, 20, 217 (2013)
  10. Oh SA, Park KB, Park CI, Bae W, Clean Technol., 1, 19 (2006)
  11. Kim SH, Chang HS, Park S, Song K, Polym. Korea, 34(5), 469 (2010)
  12. Lee S, Ha K, Polym. Korea, 37(6), 777 (2013)
  13. Park JB, Lee CW, Mun KJ, Choi NW, Soh YS, Architect. Res., 10, 497 (2006)
  14. Hoyle CE, Bowman CN, Angew. Chem.-Int. Edit., 49, 1540 (2010)
  15. Han SY, Jung YH, Oh JS, Kaang SK, Hong CK, Elastomers Compos., 47, 2 (2012)
  16. Asempour F, Emadzadeh D, Matsuura T, Kruczek B, Desalination, 439, 179 (2018)
  17. Lee JH, Lee DK, Ha KY, Polym. Korea, 42(6), 1096 (2018)
  18. Alves L, Lindman B, J. Mol. Liq., 106, 21 (2015)
  19. Janes DW, Shanmuganathan K, Chou DY, Ellison CJ, ACS Macro Lett., 1, 1138 (2012)
  20. Mathew AP, Oksman K, Sain M, J. Appl. Polym. Sci., 97, 2621 (2005)
  21. Hoyle CE, Bowman CN, Angew. Chem.-Int. Edit., 49, 1540 (2010)
  22. Wu QJ, Henriksson M, Liu X, Berglund LA, Biomacromolecules, 8(12), 3687 (2007)
  23. Xu X, Liu F, Zhu JY, Haagenson D, Wiesenborn D, ACS Appl. Mater. Interfaces, 5, 2999 (2013)
  24. Bergstrom JS, Boyce MC, Rubber Chem. Technol., 72, 633 (1999)
  25. Bardet R, Roussel F, Coindeau S, Belgacem N, Bras J, Carbohydr. Polym., 122, 367 (2015)
  26. Yoo TW, Woo JS, Ji JH, Lee BM, Kim SS, Biomater. Res., 16, 32 (2012)