Polymer(Korea), Vol.43, No.4, 640-645, July, 2019
고분자 존재 하에 Luteolin의 구형 증발 결정화
Spherical Evaporative Crystallization of Luteolin in Presence of Polymers
초록
균일한 증발결정화를 위해서는 캐스팅된 용액을 증발시킬 때, 증발 속도에 의한 각 위치의 과포화도를 조절하는 것이 중요하다. 본 연구에서는 공기 흐름을 조절한 증발 시스템에서 고분자 유도 결정화를 통해 균일한 구형 결정을 얻어냈다. Luteolin과 ethyl cellulose의 혼합 용액으로부터 균일한 원형 결정이 증발 순서에 따라 배열되었다. 용매의 휘발성에 따라 기판 속도를 조절했고, 용액 농도가 높을수록 두꺼운 결정이 생성되었다. 또한 ethyl cellulose에 의해 luteolin 결정의 모폴로지는 응집된 작은 덩어리 형태로 바뀌었고, 결정성은 감소하였다. 결과적으로, luteolin과 고분자의 증발결정화를 이용해 독특한 형태의 복합결정체를 만들 수 있어, 다양한 응용이 가능할 것으로 보인다.
For uniform evaporative crystallization, it is important to appropriately control the degree of supersaturation of each solution position by the evaporation rate. In this study, uniform spherical crystals were obtained by conducting polymer-induced crystallization in the evaporation system of controlled air flow. In the evaporation system, mixture solution of luteolin and ethyl cellulose was evaporated for crystallization, and uniform circular crystals were formed in the order of evaporation. Depending on the degree of volatility of the solvent, the moving rate of the substrate should be controlled. The higher the concentration of the solution, the thicker the crystals were produced. When ethyl cellulose was added, the morphology of the luteolin crystals changed into the form of agglomerated tiny clusters, and the crystallinity decreased. As a result, the crystallization of luteolin in presence of a polymer, which can be used to prepare a unique form of complex crystals, expects various applications of luteolin.
Keywords:evaporation crystallization;limited air-flow system;uniform spherical crystal;luteolin;ethyl cellulose
- Lee L, Baek J, Park KS, Lee YE, Shrestha NK, Sung MM, Nat. Commun., 8, 15882 (2017)
- Liu JG, Sun Y, Gao XA, Xing RB, Zheng LD, Wu SP, Geng YH, Han YC, Langmuir, 27(7), 4212 (2011)
- Wichianphong N, Charoenchaitrakool M, J. Ind. Eng. Chem., 62, 375 (2018)
- Kim BS, Lee J, Chem. Eng. J., 301, 158 (2016)
- Kim WR, Park MJ, Park YS, Kwon YJ, Jo YM, J. Ind. Eng. Chem., 68, 153 (2018)
- Pei A, Zhou Q, Berglund LA, Compos. Sci. Technol., 70, 815 (2010)
- Arenas-Garcia JI, Herrera-Ruiz D, Mondragon-Vasquez K, Morales-Rojas H, Hopfl H, Cryst. Growth Des., 10, 3732 (2010)
- Kim HJ, An S, Lee J, Cryst. Growth Des., 17, 2600 (2017)
- Nagy ZK, Fujiwara M, Woo XY, Braatz RD, Ind. Eng. Chem. Res., 47(4), 1245 (2008)
- An S, Kim HJ, Chi S, Lee J, Macromol. Rapid Commun., 39, 180010 (2018)
- Oka N, Ito F, Haketa Y, Maeda H, Miyano T, Tohnai N, Ito S, Iyasaka H, Ozeki S, Chem..A Eur. J., 24, 4343 (2018)
- Aamir E, Nagy Z, Rielly C, Cryst. Growth Des., 10, 4728 (2010)
- Ueda K, Higashi K, Yamamoto K, Moribe K, Int. J. Pharm., 464, 205 (2014)
- Kim JM, Jung DW, Lee GH, Yi GR, Macromol. Res., 26(6), 539 (2018)
- Lee GW, Cho HH, Jeon SH, Choi MJ, Kim D, Kim HS, Song JE, Khang GS, Macromol. Res., 27(4), 354 (2019)
- Mahalakshmi S, Alagesan T, Parthasarathy V, Anbarasan R, Macromol. Res., 27(4), 386 (2019)
- Leopoldini M, Pitarch IP, Russo N, Toscano M, J. Phys. Chem. A, 108, 92 (2004)
- Nakamura Y, Torikai K, Ohigashi H, Free Radical Biol. Med., 30, 967 (2001)
- Igile GO, Oleszek W, Jurzysta M, Burda S, Fafunso M, Fasanmade AA, J. Agr. Food Chem., 42, 2445 (1994)
- Choe GH, Cho YH, Bae SM, Yoon SH, Lee JH, J. Ind. Eng. Chem., 73, 58 (2019)
- Halake K, Cho SV, KiM JS, Lee TW, Cho YH, Chi SW, Park MJ, Kim KH, Lee DH, Ju H, ChoI YH, Jang MS, Choe GH, Lee JH, Macromol. Res., 26(2), 93 (2018)
- Kawashima Y, Cui F, Takeuchi H, Niwa T, Hino T, Kiuchi K, Powder Technol., 78(2), 151 (1994)
- Maghsoodi M, Hassan-Zadeh D, Barzegar-Jalali M, Nokhodchi A, Martin G, Drug Dev. Ind. Pharm., 33, 1216 (2007)
- Nokhodchi A, Maghsoodi M, AAPS PharmSciTech, 9, 54 (2008)