Journal of Industrial and Engineering Chemistry, Vol.77, 105-110, September, 2019
Organic ligand-free PtIr alloy nanostructures for superior oxygen reduction and evolution reactions
E-mail:
In the thermal decomposition method, organic solvents, ligands, and compounds are usually used under an N2 atmosphere to synthesize pure metal and alloy nanostructures with high specific surface areas. However, the organic materials, which are used during the synthesis of metallic nanostructures, need to be completely eliminated to obtain cleaned surface states for effective catalytic reactions in aqueous atmospheres. Herein, we synthesize PtIr nanostructures using a thermal decomposition method, followed by a heating process of the nanostructures under an air atmosphere to eliminate the organic materials covering the surface of PtIr catalysts. The heated PtIr alloy nanostructure catalysts represent the superior oxygen reduction and evolution performance due to an increased electrochemical active surface area caused by the complete removal of organic materials.
Keywords:Thermal decomposition method;PtIr alloy nanostructure;Heating process;Oxygen reduction reaction;Oxygen evolution reaction
- Harlow JE, Stevens DA, Sanderson RJ, Watson CW, Crowtz TC, Dahn JR, Haugen GM, Atanasoska LL, Vernstrom GD, Atanasoski RT, ECS Trans., 50, 1575 (2013)
- Reier T, Oezaslan M, Strasser P, ACS Catal., 2, 1765 (2012)
- Fuentes RE, Farell J, Weidner JW, Electrochem. Solid State Lett., 14(3), E5 (2011)
- Wang C, Markovic NM, Stamenkovic VR, ACS Catal., 2, 891 (2012)
- Guo S, Zhang S, Sun S, Angew. Chem.-Int. Edit., 52, 8526 (2013)
- Lee S, Kwak DH, Han SB, Lee YW, Lee JY, Choi IA, Park HS, Park JY, Park KW, ACS Catal., 6, 5095 (2016)
- Lee YW, Hwang ET, Kwak DH, Park KW, Catal. Sci. Technol., 6, 569 (2016)
- Tian F, Anderson AB, J. Phys. Chem. C, 115, 4076 (2011)
- Pegis ML, McKeown BA, Kumar N, Lang K, Wasylenko DJ, Zhang XP, Raugei S, Mayer JM, ACS Cent. Sci., 2, 850 (2016)
- Watanabe M, Tryk DA, Wakisaka M, Yano H, Uchida H, Electrochim. Acta, 84, 187 (2012)
- Stephens IEL, Bondarenko AS, Grønbjerg U, Rossmeisl J, Chorkendorff I, Energy Environ. Sci., 5, 6744 (2012)
- Chen J, Fang L, Luo S, Liu Y, Chen S, J. Phys. Chem. C., 121, 6209 (2017)
- Greeley J, Stephens IEL, Bondarenko AS, Johansson TP, Hansen HA, Jaramillo TF, Rossmeisl J, Chorkendorff I, Nørskov JK, Nat. Chem., 1, 552 (2009)
- Wang C, Wang G, van der Vliet D, Chang KC, Markovic NM, Stamenkovic VR, Phys. Chem. Chem. Phys., 12, 6933 (2010)
- Paulus UA, Wokaun A, Scherer GG, Schmidt TJ, Stamenkovic V, Markovic NM, Ross PN, Electrochim. Acta, 47(22-23), 3787 (2002)
- Park K, Phys. Chem. Chem. Phys., 17, 8642 (2015)
- Gasteiger HA, Kocha SS, Sompalli B, Wagner FT, Appl. Catal. B: Environ., 56(1-2), 9 (2005)
- Stamenkovic V, Mun BS, Mayrhofer KJJ, Ross PN, Markovic NM, Rossmeisl J, Greeley J, Nørskov JK, Angew. Chem.-Int. Edit., 45, 2897 (2006)
- Koh S, Strasser P, J. Am. Chem. Soc., 129(42), 12624 (2007)
- Stamenkovic VR, Fowler B, Mun BS, Wang G, Ross PN, Lucas CA, Markovic NM, Science, 315, 493 (2007)
- Wakisaka M, Suzuki H, Mitsui S, Uchida H, Watanabe M, J. Phys. Chem. C, 112, 2750 (2008)
- Chen S, Sheng W, Yabuuchi N, Ferreira PJ, Allard LF, Shao-Horn Y, J. Phys. Chem. C, 113, 1109 (2009)
- Antolini E, ACS Catal., 1440, 1426 (2014)
- Chen W, Chen S, J. Mater. Chem., 21, 9169 (2011)
- Ma YG, Balbuena PB, J. Electrochem. Soc., 157(6), B959 (2010)
- Mukerjee S, Srinivasan S, Soriaga MP, Mcbreen J, J. Phys. Chem., 99(13), 4577 (1995)
- Mukerjee S, Srinivasan S, Soriaga MP, Mcbreen J, J. Electrochem. Soc., 142(5), 1409 (1995)
- Ioroi T, Yasuda K, J. Electrochem. Soc., 152(10), A1917 (2005)
- Taylor AK, Perez DS, Zhang X, Pilapil BK, Engelhard MH, Gates BD, Rider DA, J. Mater. Chem. A, 5, 21514 (2017)
- Du W, Wang Q, Saxner D, Deskins NA, Su D, Krzanowski JE, Frenkel AI, Teng X, J. Am. Chem. Soc., 15172 (2011).
- Du W, Deskins NA, Su D, Teng X, ACS Catal., 2, 1226 (2012)
- Lee YW, Ko AR, Han SB, Kim HS, Park KW, Phys. Chem. Chem. Phys., 13, 5569 (2011)
- Hyun K, Lee JH, Yoon CW, Kwon Y, Int. J. Electrochem. Sci., 8, 11752 (2013)
- Hwang SJ, Yoo SJ, Jeon TY, Lee KS, Lim TH, Sung YE, Kim SK, Chem. Commun., 46, 8401 (2010)
- Wesselmark M, Wickman B, Lagergren C, Lindbergh G, Electrochim. Acta, 111, 152 (2013)
- Lee YW, Ko AR, Kim DY, Han SB, Park KW, RSC Adv., 2, 1119 (2012)
- Kwak DH, Lee YW, Han SB, Lee JY, Zhoh CK, Park KW, Electrochim. Acta, 176, 790 (2015)
- Kwak DH, Lee YW, Han SB, Hwang ET, Park HC, Kim MC, Park KW, J. Power Sources, 275, 557 (2015)
- Hwang ET, Lee YW, Park HW, Kwak DH, Kim DM, Kim SJ, Kim MC, Lee JY, Lee S, Park KW, RSC Adv., 5, 8301 (2015)
- Kwak DH, Lee YW, Lee KH, Park AR, Moon JS, Park KW, Int. J. Electrochem. Sci., 8, 5102 (2013)
- Ioroi T, Kitazawa N, Yasuda K, Yamamoto Y, Takenaka H, J. Appl. Electrochem., 31(11), 1179 (2001)