화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.57, No.4, 469-474, August, 2019
Purification of Biohydrogen Produced From Palm Oil Mill Effluent Fermentation for Fuel Cell Application
E-mail:
Fermentation of palm oil mill effluent (POME) produces biohydrogen in a mixture at a specific set condition. This research was conducted to purify the produced mixed biohydrogen via absorption and membrane techniques. Three different solvents, methyl ethanolamine (MEA), ammonia (NH3) and potassium hydroxide (KOH) solutions, were used in absorption technique. The highest H2 purity was found using 1M MEA solution with 5.0 ml/s feed mixed gas flow rate at 60 minutes absorption time. Meanwhile, the purified biohydrogen using a polysulfone membrane had the highest H2 purity at 2~3 bar operating pressure. Upon testing with proton exchange membrane fuel cell (PEMFC), the highest current and power produced at 100% H2 were 1.66 A and 8.1 W, while the lowest were produced at 50/50 vol% H2/CO2 (0.32 A and 0.49 W). These results proved that both purification techniques have significant potential for H2 purification efficiency.
  1. Sayari A, Belmabkhout Y, Serna-Guerrero R, Chem. Eng. J., 171(3), 760 (2011)
  2. Yang H, Fan S, Lang X, Wang Y, Nie J, Chinese J. Chem. Eng., 19(4), 615 (2011)
  3. Chin MJ, Poh PE, Tey BT, Chan ES, Chin KL, Renew. Sust. Energ. Rev., 26, 717 (2013)
  4. Kim K, Ingole PG, Kim J, Lee H, Chem. Eng. J., 233, 242 (2013)
  5. Rufford TE, Smart S, Watson GCY, Graham BF, Boxall J, Diniz da Costa JC, J. Pet. Sci. Eng., 94-95, 123 (2012)
  6. Bakonyi P, Nemestothy N, Belafi-Bako K, Int. J. Hydrog. Energy, 38(23), 9673 (2013)
  7. Diao YF, Zheng XY, He BS, Chen CH, Xu XC, Energy Conv. Manag., 45(13-14), 2283 (2004)
  8. Ma SC, Song HH, Wang MX, Yang JH, Zang B, Chem. Eng. Res. Des., 91(7), 1327 (2013)
  9. Kumbharkar SC, Liu Y, Li K, J. Membr. Sci., 375(1-2), 231 (2011)
  10. Modigell M, Schumacher M, Teplyakov VV, Zenkevich VB, Desalination, 224(1-3), 186 (2008)
  11. Badiei M, Jahim JM, Anuar N, Rozaimah S, Abdullah S, Int. J. Hydrog. Energy, 36(10), 5912 (2011)
  12. Chong PS, Jahim JM, Harun S, Lim SS, Abd Mutalib S, Hassan O, Nor MTM, Int. J. Hydrog. Energy, 38(22), 9592 (2013)
  13. Mohamad IN, Rohani R, Masdar MSM, Nor MTM, Jahim JM, Int. J. Hydrog. Energy, 41(7), 4474 (2016)
  14. Maceiras R, Alves SS, Cancela MA, Alvarez E, Chem. Eng. J., 137(2), 422 (2008)
  15. Zhao B, Su Y, Peng Y, Int. J. Greenh. Gas Control, 17, 481 (2013)
  16. Luis P, Desalination, 380, 93 (2016)
  17. Spigarelli BP, Kawatra SK, J. CO2 Util., 1, 69 (2013)
  18. Choi SH, Lee MK, Oh SJ, Koo JK, J. Membr. Sci., 221(1-2), 37 (2003)
  19. Rezakazemi M, Ebadi Amooghin A, Montazer-Rahmati MM, Ismail AF, Matsuura T, Prog. Polym. Sci, 39(5), 817 (2014)
  20. David OC, Gorri D, Urtiaga A, Ortiz I, J. Membr. Sci., 378(1-2), 359 (2011)
  21. Ebert K, Fritsch D, Koll J, Tjahjawiguna C, J. Membr. Sci., 233(1-2), 71 (2004)
  22. Bakonyi P, Nemestothy N, Lanko J, Rivera I, Buitron G, Belafi-Bako K, Int. J. Hydrog. Energy, 40(4), 1690 (2015)
  23. Ahluwalia RK, Wang X, J. Power Sources, 180(1), 122 (2008)