화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.29, No.7, 432-436, July, 2019
Mn 분말을 환원제로 사용하여 열증발법에 의해 생성된 ZnO 마이크로/나노결정
ZnO Micro/Nanocrystals Synthesized by Thermal Evaporation Method using Mn Powder as the Reducing Agent
E-mail:
Zinc oxide(ZnO) micro/nanocrystals are grown via thermal evaporation of ZnO powder mixed with Mn powder, which is used as a reducing agent. The ZnO/Mn powder mixture produces ZnO micro/nanocrystals with diverse morphologies such as rods, wires, belts, and spherical shapes. Rod-shaped ZnO micro/nanocrystals, which have an average diameter of 360 nm and an average length of about 12 μm, are fabricated at a temperature as low as 800 °C due to the reducibility of Mn. Wireand belt-like ZnO micro/nanocrystals with length of 3 μm are formed at 900 °C and 1,000 °C. When the growth temperature is 1,100 °C, spherical shaped ZnO crystals having a diameter of 150 nm are synthesized. X-ray diffraction patterns reveal that ZnO had hexagonal wurtzite crystal structure. A strong ultraviolet emission peak and a weak visible emission band are observed in the cathodoluminescence spectra of the rod- and wire-shaped ZnO crystals, while visible emission is detected for the spherical shaped ZnO crystals.
  1. Yang PD, Yan HQ, Mao S, Russo R, Johnson J, Saykally R, Morris N, Pham J, He RR, Choi HJ, Adv. Funct. Mater., 12(5), 323 (2002)
  2. Cheng A, Tzeng Y, Zhou Y, Park M, Wu T, Shannon C, Wang D, Lee W, Appl. Phys. Lett., 92, 092113 (2008)
  3. Yang JL, An SJ, Park WI, Yi GC, Choi W, Adv. Mater., 16(18), 1661 (2004)
  4. Na JS, Gong B, Scarel G, Parsons GN, ACS Nano, 3, 3191 (2009)
  5. Lee J, Easteal AJ, Pal U, Bhattacharyya D, Curr. Appl. Phys., 9(4), 792 (2009)
  6. Illy BN, Ingham B, Ryan MP, Cryst. Growth Des., 10, 1189 (2010)
  7. Calestani D, Zha MZ, Zanotti L, Villani M, Zappettini A, Cryst. Eng. Comm., 13, 1707 (2011)
  8. Johari A, Rana V, Bhatnagar MC, Nanomater. Nanotechnol., 1, 49 (2011)
  9. Xu CX, Sun XW, Dong ZL, Yu MB, Appl. Phys. Lett., 85, 3878 (2004)
  10. Yao BD, Chan YF, Wang N, Appl. Phys. Lett., 81, 757 (2002)
  11. Biswas M, McGlynn E, Henry MO, McCann M, Rafferty A, J. Appl. Phys., 105, 094306 (2009)
  12. Lv H, Sang DD, Li HD, Du XB, Li DM, Zou GT, Nanoscale Res. Lett., 5, 620 (2010)
  13. Zhang Y, Ram MK, Stefanakos EK, Goswami DY, J. Nanomater., 2012, 624520 (2012)
  14. Kim DS, Gosele U, Zacharias M, J. Cryst. Growth, 311(11), 3216 (2009)
  15. Ozgur U, Alivov YI, Liu C, Teke A, Reshchikov MA, Dogan S, Avrutin V, Cho SJ, Morloc H, J. Appl. Phys., 98, 041301 (2005)
  16. Wang DF, Zhang TJ, Solid State Commun., 149, 1947 (2009)
  17. Djurisic AB, Choy WCH, Roy VAL, Leung YH, Kwong CY, Cheah KW, Rao TKG, Chan WK, Lui HT, Surya C, Adv. Funct. Mater., 14(9), 856 (2004)
  18. Wu XL, Siu GG, Fu CL, Ong HC, Appl. Phys. Lett., 78, 2285 (2001)