AAPG Bulletin, Vol.103, No.7, 1575-1603, 2019
Architecture, geomorphology, and sediment gravity flows of a Jurassic subaqueous clinoform system, northeast Exmouth Plateau, North West Shelf, Australia
A subaqueous clinoform system has been identified from high-quality three-dimensional seismic data from the northeast Exmouth Plateau, North West Shelf, Australia, and was interpreted as a shelf-slope-basin clinoformal component of a Jurassic fluviodeltaic system (the Legendre delta). Several geomorphological features associated with shelf-slope development and subsequent rift tectonics were identified, including (1) submarine channels at slope to basin floor; (2) gullies on the slope; (3) slumps on the shelf; and (4) canyons, canyon-derived gravity flow deposits, and a fan lobe developed in subsequent rift processes. The results of this study provide insights into the controlling factors on the sinuosity, degree of erosion, and sediment gravity flows of channels developed at slope to basin-floor settings, which shed light on the way fluvial sands were transported across the shelf and slope to the basin floor. The geometries and distributions of gravity flow deposits, if confirmed by drilling, may serve as an analog for reservoir prediction in the deep-water fluviodeltaic settings. The gullies on the slope were interpreted as a result of dilute, sheetlike flows. The slumps on the shelf were interpreted as a result of nonslope-related causes. The syntectonic canyons, the canyon-derived gravity flow deposits, and the fan lobe present vivid examples of the erosion and sedimentation processes during active rift tectonics and have significant implications for understanding the rift processes of the North West Shelf, Australia, as well as other rift-related basins.