화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.30, No.4, 389-398, August, 2019
수전해 시스템에 적용 가능한 전해질막 연구 개발 동향
Research and Development Trend of Electrolyte Membrane Applicable to Water Electrolysis System
E-mail:
초록
수소에너지는 화석연료의 사용으로 인해 나타나는 기후변화의 문제를 해결할 수 있는 방안일 뿐 아니라 산업용 전력 생산, 자동차용 연료 등을 위한 대체가능한 에너지로 인식되고 있다. 수소제조 방법 중 물의 전기분해를 이용한 방법이 가장 효율적이고 실용적인 방법으로 여겨지고 있으며, 수소를 물로부터 직접 제조하는 방법은 화석연료 이용 제조 방법과 비교하여 보았을 때 지구환경 오염물질인 메탄, 이산화탄소 등의 배출이 없다. 본 총설은 수소제조 방법 중하나인 물 전기분해의 종류인 알칼리 수전해(alkaline water electrolysis, AWE), 고분자전해질막 수전해(polymer electrolyte membrane water electrolysis, PEMWE)에 대해서 분석하고 최근 연구 중인 탄화수소 전해질막의 동향 및 전해질막의 문제점인 크로스오버현상에 대해 설명하였다.
Hydrogen energy is not only a solution to climate change problems caused by the use of fossil fuels, but also as an alternative source for the industrial power generation and automotive fuel. Among hydrogen production methods, electrolysis of water is considered to be one of the most efficient and practical methods. Compared to that of the fossil fuel production method, the method of producing hydrogen directly from water has no emission of methane and carbon dioxide, which are regarded as global environmental pollutants. In this paper, the alkaline water electrolysis (AWE) and polymer electrolyte membrane water electrolysis (PEMWE), which are one of the hydrogen production methods, were discussed. Recent research trends of hydrocarbon electrolyte membranes and the crossover phenomenon of electrolyte membranes were also described.
  1. Betts RA, Jones CD, Knight JR, Keeling RF, Kennedy JJ, Nature Climate Change, 6, 806 (2016)
  2. Park CK, Environmental Engineering Research, 30, 1179 (2008)
  3. Asuncion RC, Lee MS, Asian Development Bank (ADB) Economics Working Paper Series, No. 507 (2017).
  4. Cho KW, Maeng JH, J. Korean Society Marine Environment Energy, 10, 227 (2007)
  5. Jeong BH, Kim NO, Lee KY, The Transactions of the Korean Institute of Electrical Engineers P, 59, 293-297 (2010).
  6. Bioenergy IE, Bioenergy A, Report for Policy Advisors and Policy Makers. IEA Bioenergy: ExCo, 3, 1-62 (2010).
  7. Xing W, Seventeenth Annual Battery Conference on Applications and Advances. Proceedings of Conference (Cat. No. 02TH8576), 191-194, Long Beach, CA, USA (2002).
  8. Bloomfield BP, Coombs R, J. Management Studies, 29, 459 (1992)
  9. Gibbins J, Chalmers H, Energy Policy, 36(12), 4317 (2008)
  10. Ahmed S, Krumpelt M, Int. J. Hydrog. Energy, 26(4), 291 (2001)
  11. Xiang WU, Chen YY, Energy Fuels, 21(4), 2272 (2007)
  12. Ni M, Leung DYC, Leung MKH, Sumathy K, Fuel Process. Technol., 87(5), 461 (2006)
  13. Hwang GJ, Kang KS, Han HJ, Kim JW, Transactions of the Korean Hydrogen and New Energy Society, 18, 95-108 (2007).
  14. Hwang GJ, Kang KS, Han HJ, Kim JW, Transactions of the Korean Hydrogen and New Energy Society, 18, 95-108 (2007).
  15. Lavorante MJ, Reynoso CY, Franco JI, Desalination Water Treatment, 56, 3647 (2015)
  16. Moon K, Pak D, J. Energy Engineering, 24, 33 (2015)
  17. Chakik FE, Kaddami M, Mikou M, International Journal of Hydrogen Energy, 42, 25550-25557 (2017).
  18. Ayers KE, Anderson EB, Capuano C, Carter B, Dalton L, Hanlon G, Manco J, Niedzwiecki M, ECS Transactions, 33, 3 (2010)
  19. Rashid MM, Mesfer MK, Naseem H, Danish M, International Journal of Engineering and Advanced Technology, 4, 80-93 (2015).
  20. Carmo M, Fritz DL, Mergel J, Stolten D, International Journal of Hydrogen Energy, 38, 4901-4934 (2013).
  21. Hickner MA, Ghassemi H, Kim YS, Einsla BR, McGrath JE, Chem. Rev., 104(10), 4587 (2004)
  22. Bae BC, Trends in Metals & Materials Engineering (The Korean Institute of Metals & Materials), 28(4), 13-22 (2015).
  23. Du M, Yang L, Luo X, Wang K, Chang G, Polymer J, 51, 69 (2019)
  24. Miyake J, Taki R, Mochizuki T, Shimizu R, Akiyama R, Uchida M, Miyatake K, Science Advances, 3, eaao04 (2017)
  25. Kim K, Heo P, Han J, Kim J, Lee JC, J. Power Sources, 401, 20 (2018)
  26. Kim K, Kim SK, Park JO, Choi SW, Kim KH, Ko T, Pak C, Lee JC, J. Membr. Sci., 537, 11 (2017)
  27. Lim MY, Kim K, Polymers, 10, 569 (2018)
  28. Lewinski KA, Van der Vliet DF, Muopa SM, ECS Transactions, 69, 893 (2015)
  29. Jang IY, Kweon OH, Kim KE, Hwang GJ, Moon SB, Kang AS, J. Membr. Sci., 322(1), 154 (2008)
  30. Ayers KE, Capuano C, Anderson EB, ECS Transactions, 41, 15 (2012)
  31. Siracusano S, Baglio V, Stassi A, Merlo L, Moukheiber E, Arico' AS, J. Membr. Sci., 466, 1 (2014)
  32. Han SB, Korean J. Chem. Eng., 21, 1 (2018)
  33. Linkous CA, Anderson HR, Kopitzke RW, Nelson GL, Int. J. Hydrog. Energy, 23(7), 525 (1998)
  34. Kobayashi T, Rikukawa M, Sanui K, Ogata N, Solid State Ion., 106(3-4), 219 (1998)
  35. Wang F, Hickner M, Kim YS, Zawodzinski TA, McGrath JE, J. Membr. Sci., 197(1-2), 231 (2002)
  36. Soczka-Guth T, Baurmeister J, Frank G, Knauf R, U.S. Patent 6,355,149 (2002).
  37. Asano N, Aoki M, Suzuki S, Miyatake K, Uchida H, Watanabe M, J. Am. Chem. Soc., 128(5), 1762 (2006)
  38. Ayers KE, Anderson EB, Capuano C, Carter B, Dalton L, Hanlon G, Manco J, Niedzwiecki M, ECS Transactions, 33, 3 (2010)
  39. Lee S, Ann J, Lee H, Kim JH, Kim CS, Yang TH, Bae B, J. Mater. Chem. A, 3, 1833 (2015)
  40. Lee SY, Kim HJ, Nam SY, Park CH, Membrane J., 26, 1 (2016)
  41. Ramaswamy N, Mukerjee S, Adv. Phys. Chem., 2012, 1 (2012)
  42. Hwang GJ, Lim SG, Bong SY, Ryu CH, Choi HS, Korean J. Chem. Eng., 32(9), 1896 (2015)
  43. Wendt H, Hofmann H, J. Appl. Electrochem., 19, 605 (1989)
  44. Rosa VM, Santos MBF, Da Silva EP, Int. J. Hydrog. Energy, 20, 697 (1995)
  45. Hu W, Cao X, Wang F, Zhang Y, Int. J. Hydrog. Energy, 22, 441 (1997)
  46. Merle G, Wessling M, Nijmeijer K, J. Membr. Sci., 377(1-2), 1 (2011)
  47. Hwang GJ, Choi HS, Membrane J., 27, 477 (2017)
  48. Diaz LA, Coppola RE, Abuin GC, Escudero-Cid R, Herranz D, Ocon P, J. Membr. Sci., 535, 45 (2017)
  49. Park EJ, Capuano CB, Ayers KE, Bae C, J. Power Sources, 375, 367 (2018)
  50. Park JN, Korean J. Chem. Eng., 21, 10 (2018)
  51. Masson JP, Molina R, Roth E, Gaussens G, Lemaire F, Int. J. Hydrog. Energy, 7, 167 (1982)
  52. Linkous CA, Anderson HR, Kopitzke RW, Nelson GL, Int. J. Hydrog. Energy, 23(7), 525 (1998)
  53. Lee S, Ann J, Lee H, Kim JH, Kim CS, Yang TH, Bae B, J. Mater. Chem. A, 3, 1833 (2015)
  54. Bae B, Miyatake K, Watanabe M, Polymer Science: A Comprehensive Reference, Ch. 10.34, 621-650, Elsevier, Amsterdam, The Netherlands (2012).
  55. Schroder V, Emonts B, Janssen H, Schulze HP, Chem. Eng. Technol., 27(8), 847 (2004)
  56. Grigoriev SA, Millet P, Korobtsev SV, Porembskiy VI, Pepic M, Etievant C, Puyenchet C, Fateev VN, Int. J. Hydrog. Energy, 34(14), 5986 (2009)
  57. Inaba M, Kinumoto T, Kiriake M, Umebayashi R, Tasaka A, Ogumi Z, Electrochimica Acta, 51, 5746 (2006)
  58. Vogt H, Electrochimica Acta, 56, 1409 (2011)
  59. Trinke P, Haug P, Brauns J, Bensmann B, Hanke-Rauschenbach R, Turek T, J. Electrochem. Soc., 165(7), F502 (2018)