화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.30, No.4, 453-459, August, 2019
Tween-Span계 비이온성 혼합계면활성제를 이용한 Coconut Oil 원료 유화액의 유화안정성 평가
Evaluation of Coconut Oil-based Emulsion Stability Using Tween-Span Type Nonionic Mixed Surfactant
E-mail:
초록
본 연구에서는 coconut oil과 Tween-Span계 비이온성 혼합계면활성제를 사용하여 제조한 O/W (oil in water) 유화액의 안정성에 영향을 끼치는 인자를 평가하였다. 이를 위해 비이온성 혼합계면활성제의 HLB value와 첨가량, 균질화 속도를 변수로 설정하여 제조한 O/W 유화액의 평균액적크기, 제타포텐셜, 유화안정도지수(ESI), 열적 불안정도지수(TII) 등으로부터 유화액의 안정성을 평가하였다. 제조한 O/W 유화액의 평균액적크기는 100~200 nm의 나노에멀젼으로서 비이온성 혼합계면활성제의 첨가량 및 균질화 속도가 증가함에 따라 평균액적크기는 감소하였으며, 제타포텐셜은 증가하였다. 비이온성 혼합계면활성제의 HLB value가 6.0, 10.0, 8.0 순으로 우수하게 나타났으며, HLB value가 8.0에서 제조한 유화액의 평균액적크기는 120 nm으로 가장 작고, 제타포텐셜은 40~60 mV로 가장 크게 나타났다. ESI 및 TII를 통한 안정성 평가는 HLB value가 6.0, 10.0, 8.0 순으로 안정성이 증가하였으며, HLB value가 8.0에서의 ESI 및 TII는 각각 80% 이상과 20% 이하로 가장 우수하게 나타났다.
In this study, the influence factors on the stability of the O/W (oil in water) emulsions prepared with coconut oil and the nonionic mixed surfactant (Tween 80-Span 80) were evaluated. The concentration and HLB value of the nonionic mixed surfactant, and the degree of agitation were used as manufacture factors. The stability of prepared O/W emulsions were measured with the mean droplet size, zeta-potential, emulsion stability index (ESI), and thermal instability index (TII). The mean droplet size of the prepared O/W emulsions was from 100 to 200 nm. As the concentration of mixed surfactant and the homogenization speed increased, the droplet sizes decreased, while the zeta-potential values increased. The effect of HLB values increased in the order of 6.0, 10.0 and 8.0, and at the HLB value of 8 the smallest mean droplet size as 120 nm was obtained whereas the largest value of the zeta-potential between 10 and 60 mV. From the results of ESI and TII, the stability of prepared O/W emulsions increased in order of 6.0, 10.0 and 8.0 of HLB values, and ESI and TII values were above 80% and below 20% respectively at HLB value of 8.0.
  1. Teo A, Lee SJ, Goh KKT, Wolber FM, Food Chem., 221, 1269 (2017)
  2. Hebishy E, Buffa M, Juan B, Blasco-Moreno A, Trujillo AJ, LWT Food Sci. Technol., 76, 57 (2017)
  3. Zhang Z, Wang X, Yu J, Chen S, Ge H, Jiang L, LWT Food Sci. Technol., 78, 241 (2017)
  4. Griffin WC, J Soc. Cosmet. Chem., 1, 311 (1949)
  5. Yeon JY, Shin BR, Kim TG, Seo JM, Lee CH, Lee SG, Pyo HB, J. Soc. Cosmet. Sci. Korea, 40(3), 227 (2014)
  6. Housaindokht MR, Pour AN, Solid State Sci., 14, 622 (2012)
  7. Jin X, Streett DA, Dunlap CA, Lyn ME, Biol. Control, 46, 226 (2008)
  8. Kyoung KY, Lee CK, J. Soc. Cosmet. Sci. Korea, 32(4), 227 (2006)
  9. Yunita P, Irawan S, Kania D, Procedia Eng., 148, 1184 (2016)
  10. Ampatzidis CD, Varka EMA, Karapantsios TD, Colloids Surf. A: Physicochem. Eng. Asp., 460, 176 (2014)
  11. Bhatt N, Prasad RK, Panpalia GM, J. Chem. Res., 2(1), 512 (2010)
  12. Kelley D, McClements DJ, Food Hydrocolloids, 17(1), 87 (2003)
  13. Zhang Z, Wang X, Yu J, Chen S, Ge H, Jiang L, LWT Food Sci. Technol., 78, 241 (2017)
  14. Zhao JY, Dong FJ, Li YY, Kong BH, Liu Q, Process Biochem., 50(10), 1607 (2015)
  15. Griffin WC, J. Soc. Cosmet. Chem., 5, 249 (1954)
  16. Orafidiya LO, Oladimeji FA, Int. J. Pharm., 237, 241 (2002)