Applied Chemistry for Engineering, Vol.30, No.4, 453-459, August, 2019
Tween-Span계 비이온성 혼합계면활성제를 이용한 Coconut Oil 원료 유화액의 유화안정성 평가
Evaluation of Coconut Oil-based Emulsion Stability Using Tween-Span Type Nonionic Mixed Surfactant
E-mail:
초록
본 연구에서는 coconut oil과 Tween-Span계 비이온성 혼합계면활성제를 사용하여 제조한 O/W (oil in water) 유화액의 안정성에 영향을 끼치는 인자를 평가하였다. 이를 위해 비이온성 혼합계면활성제의 HLB value와 첨가량, 균질화 속도를 변수로 설정하여 제조한 O/W 유화액의 평균액적크기, 제타포텐셜, 유화안정도지수(ESI), 열적 불안정도지수(TII) 등으로부터 유화액의 안정성을 평가하였다. 제조한 O/W 유화액의 평균액적크기는 100~200 nm의 나노에멀젼으로서 비이온성 혼합계면활성제의 첨가량 및 균질화 속도가 증가함에 따라 평균액적크기는 감소하였으며, 제타포텐셜은 증가하였다. 비이온성 혼합계면활성제의 HLB value가 6.0, 10.0, 8.0 순으로 우수하게 나타났으며, HLB value가 8.0에서 제조한 유화액의 평균액적크기는 120 nm으로 가장 작고, 제타포텐셜은 40~60 mV로 가장 크게 나타났다. ESI 및 TII를 통한 안정성 평가는 HLB value가 6.0, 10.0, 8.0 순으로 안정성이 증가하였으며, HLB value가 8.0에서의 ESI 및 TII는 각각 80% 이상과 20% 이하로 가장 우수하게 나타났다.
In this study, the influence factors on the stability of the O/W (oil in water) emulsions prepared with coconut oil and the nonionic mixed surfactant (Tween 80-Span 80) were evaluated. The concentration and HLB value of the nonionic mixed surfactant, and the degree of agitation were used as manufacture factors. The stability of prepared O/W emulsions were measured with the mean droplet size, zeta-potential, emulsion stability index (ESI), and thermal instability index (TII). The mean droplet size of the prepared O/W emulsions was from 100 to 200 nm. As the concentration of mixed surfactant and the homogenization speed increased, the droplet sizes decreased, while the zeta-potential values increased. The effect of HLB values increased in the order of 6.0, 10.0 and 8.0, and at the HLB value of 8 the smallest mean droplet size as 120 nm was obtained whereas the largest value of the zeta-potential between 10 and 60 mV. From the results of ESI and TII, the stability of prepared O/W emulsions increased in order of 6.0, 10.0 and 8.0 of HLB values, and ESI and TII values were above 80% and below 20% respectively at HLB value of 8.0.
- Teo A, Lee SJ, Goh KKT, Wolber FM, Food Chem., 221, 1269 (2017)
- Hebishy E, Buffa M, Juan B, Blasco-Moreno A, Trujillo AJ, LWT Food Sci. Technol., 76, 57 (2017)
- Zhang Z, Wang X, Yu J, Chen S, Ge H, Jiang L, LWT Food Sci. Technol., 78, 241 (2017)
- Griffin WC, J Soc. Cosmet. Chem., 1, 311 (1949)
- Yeon JY, Shin BR, Kim TG, Seo JM, Lee CH, Lee SG, Pyo HB, J. Soc. Cosmet. Sci. Korea, 40(3), 227 (2014)
- Housaindokht MR, Pour AN, Solid State Sci., 14, 622 (2012)
- Jin X, Streett DA, Dunlap CA, Lyn ME, Biol. Control, 46, 226 (2008)
- Kyoung KY, Lee CK, J. Soc. Cosmet. Sci. Korea, 32(4), 227 (2006)
- Yunita P, Irawan S, Kania D, Procedia Eng., 148, 1184 (2016)
- Ampatzidis CD, Varka EMA, Karapantsios TD, Colloids Surf. A: Physicochem. Eng. Asp., 460, 176 (2014)
- Bhatt N, Prasad RK, Panpalia GM, J. Chem. Res., 2(1), 512 (2010)
- Kelley D, McClements DJ, Food Hydrocolloids, 17(1), 87 (2003)
- Zhang Z, Wang X, Yu J, Chen S, Ge H, Jiang L, LWT Food Sci. Technol., 78, 241 (2017)
- Zhao JY, Dong FJ, Li YY, Kong BH, Liu Q, Process Biochem., 50(10), 1607 (2015)
- Griffin WC, J. Soc. Cosmet. Chem., 5, 249 (1954)
- Orafidiya LO, Oladimeji FA, Int. J. Pharm., 237, 241 (2002)