화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.30, No.4, 487-492, August, 2019
아데노신을 포집한 나노 플렉시블 베시클 제조 및 다구찌 방법에 의한 조성의 최적화
Preparation of Nano Flexible Vesicles Encapsulating Adenosine and Composition Optimization by Taguchi Method
E-mail:
초록
주름 개선을 위한 활성물질인 아데노신의 경피 투과를 위해 나노 플렉시블 베시클에 포집을 시도하였다. 나노 플렉시블 베시클은 인지질, 에탄올, lysolecithin으로 구성되는데, 수화 과정에서 형성된 액정 상을 물속에 분산시켜 만드는 액정형 베시클이다. 본 연구에서는 베시클 입자크기에 영향을 미치는 요인을 알아보기 위하여 실험계획법 중 하나인 다구찌 방법을 적용하였다. 다구찌 직교 배열을 활용하여 베시클 입자크기에 대한 망소 특성의 S/N 비를 산출하였다. 베시클 구성성분에서 에탄올과 lysolecithin 비율, 수화 과정에서 투입되는 수용액 양 등이 베시클 입자크기에 큰 영향을 미치는 주요 인자들이고, ANOVA 분석을 통해 이들 인자가 신뢰수준 95%에서 유의함을 확인하였다.
Nano flexible vesicles encapsulating an adenosine, an active ingredient for anti-wrinkle, were prepared for the transdermal delivery. The nano flexible vesicle is usually composed of phospholipid, ethanol, and lysolecithin, which is a type of liquid crystalline one made by dispersing the liquid crystalline phase formed through a hydration process into a water phase. In this study, the Taguchi method, one of the experimental design methods, was applied to investigate the factors affecting the vesicle droplet size. Signal to noise (S/N) ratios for the smaller the better characteristics of vesicle droplet size were calculated using the Taguchi orthogonal array. The composition of ethanol and lysolecithin in the vesicle constituents and the amount of aqueous solution added in the hydration process were main factors that had a great effect on the vesicle droplet size and ANOVA test showed that these factors were significant at 95% confidence level.
  1. Crommelin DJA, Schreier H, Colloidal Drug Delivery Systems, 73-190, Marcel Dekker, New York, USA (1994).
  2. Crommelin DJA, Storm G, J. Liposome Res., 13(1), 33 (2003)
  3. Sharma A, Sharma US, Int. J. Pharm., 154, 123 (1997)
  4. Kirjavainen M, Urtti A, Jaaskelainen I, Suhonen TM, Paaronen P, Valjakka-Koskela R, Kiesvaara J, Monkkonen J, Biochim. Biophys. Acta, 1304(3), 179 (1996)
  5. Cevc G, Blume G, Biochim. Biophys. Acta, 1104, 226 (1992)
  6. Touitou E, Dayan N, Bergelson L, Godin B, Eliaz M, J. Control. Release, 65, 403 (2000)
  7. Aldulbaqi IM, Darwis Y, Khan NAK, Assi RA, Khan AA, Int. J. Nanomed., 11, 2279 (2016)
  8. Touitou E, Godin B, Weiss C, Drug Dev. Res., 50, 406 (2000)
  9. Bragagni M, Mennini N, Maestrelli F, Cirri M, Mura P, Drug Deliv., 19, 354 (2012)
  10. Yeh MI, Huang HC, Liaw JH, Huang MC, Wu TH, Huang KF, Hsu FL, Int. J. Dermatol., 52, 868 (2013)
  11. Song CK, Balakrishnan P, Shim CK, Chung SJ, Chong S, Kim DD, Colloids Surf. B: Biointerfaces, 92, 299 (2012)
  12. Lee SM, Choi MJ, Lee YM, Jin BS, Appl. Chem. Eng., 21(1), 40 (2010)
  13. Lim YM, Jun YK, Park S, Jin BS, Appl. Chem. Eng., 25(4), 368 (2014)
  14. Lee SY, Lim YM, Jin BS, Appl. Chem. Eng., 28(6), 679 (2017)
  15. Taguchi G, Introduction to Quality Engineering, Asian Productivity Organization, Tokyo, Japan (1990).
  16. Rao SR, Padmanabhan G, Int. J. Eng. Res. Appl., 2, 192 (2012)
  17. Varade D, Bahadur P, J. Surfactants Deterg, 7, 257 (2004)
  18. Kumar ST, Sebastian O, Sudharson CR, Int. J. App. Pharm., 8, 1 (2016)