화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.30, No.4, 493-498, August, 2019
콜로이드 용액 내의 수소연료전지 공기극 촉매용 백금 입자 성장 속도 관찰
Growing Behaviors in Colloidal Solution of Pt Crystal for PEMFC Cathode
E-mail:
초록
수소연료전지의 백금 촉매층은 높은 활성을 가지고 있어야 하며, 물과 산소의 원활한 물질전달을 위하여 얇은 두께를 유지해야 한다. 이를 위해 수열 합성 기반의 높은 백금 함량의 담지 촉매 합성법이 보고되어 왔지만, 반응과정에서의 입자 성장 거동 및 속도에 대한 접근은 상대적으로 희박하다. 본 연구에서는 환원과정이 완료된 현탁액을 교반하면서 백금 결정의 성장을 시간별로 관찰하였고 이의 전기화학적 활성을 평가하였다. 초반 교반과정 단계의 단지 수 시간에서 백금 콜로이드가 탄소 담지 백금 촉매에 붙어 백금 결정을 성장시키는 것을 확인하였다. 그 이후에는 새로운 핵성장 반응으로 크기가 작은 콜로이드가 형성되지만, 백금 결정 성장에는 참여하지 않는 것을 확인하였다. 따라서 6 h만 교반과정을 겪은 탄소 담지 백금 촉매도 산소환원반응에 대해 우수한 성능을 가지고 있음을 확인하였다.
In polymer exchange membrane fuel cells, it is crucial to fabricate a highly active and thin Pt catalyst layer for the smooth mass transport of dissolved oxygen and water. Although a highly loaded platinum (Pt) catalyst based on the hydrothermal synthesis has been reported in several studies, its growing behaviors and kinetics were yet to be understood. In this study, we investigated the growth of Pt crystal in suspension after the reduction step depending on a stirring time and evaluated the electrochemical activity. For only a couple of hours in the early stage, Pt colloids were adsorbed on the Pt-carbon catalyst and the Pt crystal was grown. After that, the small Pt colloid was formed by another nucleation step, which did not involve the growth of Pt crystal. We reveal that the Pt-Carbon catalyst with stirring for 6 h showed a high activity toward the oxygen reduction reaction.
  1. Kongkanand A, Mathias MF, J. Phys. Chem. Lett., 7, 1127 (2016)
  2. Mehta V, Cooper JS, J. Power Sources, 114(1), 32 (2003)
  3. Shin D, An X, Choun M, Lee J, Catal. Today, 260, 82 (2016)
  4. Kim H, Popov BN, Electrochem. Solid-State Lett., 7, A71 (2004)
  5. Huang XQ, Zhao ZP, Cao L, Chen Y, Zhu EB, Lin ZY, Li MF, Yan AM, Zettl A, Wang YM, Duan XF, Mueller T, Huang Y, Science, 348(6240), 1230 (2015)
  6. Mani P, Srivastava R, Strasser P, J. Power Sources, 196(2), 666 (2011)
  7. Sasaki K, Naohara H, Cai Y, Choi YM, Liu P, Vukmirovic MB, Wang JX, Adzic RR, Angew. Chem.-Int. Edit., 49, 8602 (2010)
  8. Banham D, Ye S, ACS Energy Lett., 2, 629 (2017)
  9. Bernardi DM, Verbrugge MW, AIChE J., 37, 1151 (1991)
  10. You DJ, Kwon K, Joo SH, Kim JH, Kim JM, Pak C, Chang H, Int. J. Hydrog. Energy, 37(8), 6880 (2012)
  11. Oh HS, Oh JG, Kim H, J. Power Sources, 183(2), 600 (2008)
  12. Gasteiger HA, Kocha SS, Sompalli B, Wagner FT, Appl. Catal. B: Environ., 56(1-2), 9 (2005)
  13. Chung S, Shin D, Choun M, Kim J, Yang S, Choi M, Kim JW, Lee J, J. Power Sources, 399, 350 (2018)
  14. James BD, Huya-Kouadio JM, Houchins C, DeSantis DA, 2016 update, 96-98, Strategic Analysis, Inc., Virginia, USA (2017).
  15. Wang YJ, Zhao N, Fang B, Li H, Bi XT, Wang H, RSC Adv., 5, 56570 (2015)
  16. Shin D, Jeong B, Choun M, Ocon JD, Lee J, RSC Adv., 5, 1571 (2015)
  17. Liu XY, Zhang Y, Gong MX, Tang YW, Lu TH, Chen Y, Lee JM, J. Mater. Chem. A, 2, 13840 (2014)
  18. Murray CB, Kagan CR, Bawendi MG, Annu. Rev. Mater. Sci., 30, 545 (2000)
  19. Prajapati R, Bhattacharya A, Mukherjee TK, Phys. Chem. Chem. Phys., 18, 28911 (2016)
  20. Alsawafta M, Badilescu S, Paneri A, Truong VV, Packirisamy M, Polymers, 3, 1833 (2011)
  21. Saion E, Gharibshahi E, Naghavi K, Int. J. Mol. Sci., 14(4), 7880 (2013)
  22. Gharibshahi E, Saion E, Int. J. Mol. Sci., 13(11), 14723 (2012)
  23. Kim J, Kim K, Kim D, Park H, Lee S, Lee S, J. Korean Soc. Environ. Eng., 30, 207 (2008)
  24. Daubinger P, Kieninger J, Unmussig T, Urban GA, Phys. Chem. Chem. Phys., 16, 8392 (2014)
  25. Li X, Principles of Fuel Cells, 152-155, Taylor & Francis, New York, USA (2006).
  26. Ahluwalia RK, Arisetty S, Wang XP, Wang XH, Subbaraman R, Ball SC, DeCrane S, Myers DJ, J. Electrochem. Soc., 160(4), F447 (2013)
  27. Gomez-Marin AM, Rizo R, Feliu JM, Catal. Sci. Technol., 4, 1685 (2014)