화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.516, No.3, 661-665, 2019
Regulation of RyeA/SraC expression in Escherichia coli
Small RNAs (sRNAs) play a central role in regulating almost all physiological processes in bacteria. Majority of those sRNAs base pair with their targets and modulate their expressions. RyeA, previously known as SraC in Escherichia coli, is transcribed from a DNA strand complementary to the one from which another stationary phase induced sRNA RyeB/SdsR is synthesised. RyeA and RyeB in the stationary phase constitute a toxin-antitoxin system where RyeA normalizes accumulation of RyeB toxin by acting as RNA sponge. Aside from that, no more information is known about the regulation of RyeA expression. In the current study, we have systematically investigated the regulation of RyeA expression in different growth phases, and identified that RyeA expression is regulated neither by stationary phase-specific sigma-factor nor by RNA chaperon Hfq. A dual function ribonuclease RNase BN mitigate its expression in the exponential phase. Thus, deletion of rbn gene promoted the stability of RyeA in the exponential phase. Conversely, RyeB in the stationary phase act as RNA decoy leading to RyeA degradation, and consequently, the preclusion of RyeB in the E. coli genome elevated RyeA. These regulatory mechanisms will help identify the primary role of RyeA in E. coli. (C) 2019 Elsevier Inc. All rights reserved.