Electrophoresis, Vol.40, No.15, 1959-1965, 2019
Enantioselective capillary electrophoresis for pharmacokinetic analysis of methadone and 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine in equines anesthetized with ketamine and isoflurane
An enantioselective assay for the determination of methadone and its main metabolite 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine in equine plasma based on capillary electrophoresis with highly sulfated gamma-cyclodextrin as chiral selector and electrokinetic analyte injection is described. The assay is based on liquid/liquid extraction of the analytes at alkaline pH from 0.1 mL plasma followed by electrokinetic sample injection of the analytes from the extract across a buffer plug without chiral selector. Separation occurs cationically at normal polarity in a pH 3 phosphate buffer containing 0.16% (w/v) of highly sulfated gamma-cyclodextrin. The developed assay is precise (intra- and interday RSD < 4% and < 7%, respectively), is capable to determine enantiomer levels of methadone and 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine in plasma down to 2.5 ng/mL, and was successfully applied to monitor enantiomer drug and metabolite levels in plasma of a pony that was anesthetized with racemic ketamine and isoflurane and received a bolus of racemic methadone and a bolus followed by constant rate infusion of racemic methadone. The data suggest that the assay is well suited for pharmacokinetic purposes.