Energy and Buildings, Vol.198, 340-352, 2019
NIDL: A pilot study of contactless measurement of skin temperature for intelligent building
Human thermal comfort measurement plays a critical role in giving feedback signals for building energy efficiency. A contactless measuring method based on subtleness magnification and deep learning (NIDL) was designed to achieve a comfortable, energy efficient built environment. The method relies on skin feature data, e.g., subtle motion and texture variation, and a 315-layer deep neural network for constructing the relationship between skin features and skin temperature. A physiological experiment was conducted for collecting feature data (1.44 million) and algorithm validation. The contactless measurement algorithm based on a partly-personalized saturation temperature model (NIPST) was used for algorithm performance comparisons. The results show that the mean error and median error of the NIDL are 0.476 degrees C and 0.343 degrees C which is equivalent to accuracy improvements of 39.07% and 38.76%, respectively. (C) 2019 Elsevier B.V. All rights reserved.
Keywords:Contactless method;Thermal comfort measurement;Vision-based subtleness magnification;Deep learning;Intelligent building