IEEE Transactions on Automatic Control, Vol.64, No.7, 2905-2912, 2019
A Framework for Time-Consistent, Risk-Sensitive Model Predictive Control: Theory and Algorithms
In this paper, we present a framework for risk-sensitive model predictive control (MPC) of linear systems affected by stochastic multiplicative uncertainty. Our key innovation is to consider a time-consistent, dynamic risk evaluation of the cumulative cost as the objective function to be minimized. This framework is axiomatically justified in terms of time-consistency of risk assessments. is amenable to dynamic optimization, and is unifying in the sense that it captures a full range of risk preferences from risk neutral (i.e., expectation) to worst case. Within this framework, we propose and analyze an online risk-sensitive MPC algorithm that is provably stabilizing. Furthermore, by exploiting the dual representation of time-consistent, dynamic risk measures, we cast the computation of the MPC control law as a convex optimization problem amenable to real-time implementation. Simulation results are presented and discussed.