Inorganic Chemistry, Vol.58, No.10, 6821-6831, 2019
Low-Temperature Solid-State Synthesis and Upconversion Luminescence Properties in (Na/Li)Bi(MoO4)(2):Yb3+,Er3+ and Color Tuning in (Na/Li)Bi(MoO4)(2):Yb3+,Ho3+,Ce3+ Phosphors
In this Article, we reported the synthesis and the upconversion luminescence (UCL) properties of a series of novel (Na/Li)Bi(MoO4)(2):Yb3+,Er3+ [(N/L)BMO:Yb3+,Er3+] and (Na/Li)Bi(MoO4)(2):Yb3+,Ho3+,Ce3+ [(N/L)BMO:Yb3+,Ho3+,Ce3+] phosphors. X-ray diffraction patterns and Rietveld refinements for several representative samples indicated the pure phase of as-prepared samples. The Yb3+,Er3+ codoped (N/L)BMO presented bright green luminescence under 975 nm laser excitation with UCL spectra showing two main green bands around 529 nm (Er3+, H-2(11/2) -> I-4(15/2)) and 551 nm (Er3+, S-4(3/2) -> I-4(15/2)), in addition to a very weak one at 655 nm (Er3+, F-4(9/2) -> I-4(15/2)). The (N/L)BMO:Yb3+,Ho3+ mainly showed a green band around 544 nm (S-5(2),F-5(4) -> I-5(8)) and a red band around 654 nm (F-5(5) -> I-5(8)) upon 975 nm laser excitation. With increasing Yb3+ concentrations in (N/L)BMO:Yb3+,0.01Ho(3+), the red/green ratios decreased monotonously corresponding to the emission color variation from light red to light yellow. Both UCL mechanisms of Yb3+,Er3+ and Yb3+,Ho3+ were determined to be two-phonons absorption processes in (N/L)BMO:Yb3+,Er3+/Ho3+. The Ce3+ ions were introduced into Yb3+,Ho3+ codoped (N/L)BMO to show the color tuning from light yellow to light red originating from the cross relaxation processes of (CR1) Ho3+ (F-5(4), S-5(2)) + Ce3+ (F-2(5/2)) -> Ho3+ (F-5(5)) + Ce3+ (F-2(7/2)) and (CR2) Ho3+(I-5(6)) + Ce3+ (F-2(5/2)) -> Ho3+ (I-5(7)) + Ce3+ (F-2(7/2)), which is based on the energy matching of Ce3+2F7/2-F-2(5/2) level pairs with Ho3+5I6-I-5(7) and F-5(4),S-5(2)-F-5(5) level pairs and confirmed by the decay times. These results suggest good UCL properties of (N/L)BMO:Yb3+, Er3+ and (N/L)BMO:Yb3+, Ho3+, Ce3+ materials, and color modulation is easily controlled by varying Yb3+ concentration and a cross relaxation process between Ce3+ and Ho3+, which provides efficient methods to regulate the emission color of UCL phosphors.