International Journal of Hydrogen Energy, Vol.44, No.27, 14145-14150, 2019
Investigation of hydrogen production performance of chlor-alkali cell integrated into a power generation system based on geothermal resources
In present study, hydrogen production performance of chlor-alkali cell integrated into a power generation system based on geothermal resource is studied. The basic elements of the novel system are a separator, a steam power turbine, an organic Rankine cycle (ORC), an air cooled condenser, a saturated NaCl solution reservoir tank and a chlor-alkali cell. To enhance the performance of the cell, the saturated NaCl solution is heated by the waste heat from the ORC. So, this integrated system generates significant amount of electricity for the city grid and also yields three main products those are hydrogen, chlorine and sodium hydroxide. According to the parametric study, when the temperature of a geothermal resource varies from 140 to 155 degrees C, the electrical power generation increases from nearly 2.5 MW to 3.9 MW and hydrogen production increases from 10.5 to 21.1 kg-h. Thus, when the geothermal resource temperature of 155 degrees C, the energy efficiency of the system is 6.2% and the exergetic efficiency is 22.4%. As a result, the geothermal energy potential plays a key role on the integrated system performance and the hydrogen production rate. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
Keywords:Geothermal energy;Chlor-alkali cell;Power and hydrogen production;Energy and exergy efficiency