화학공학소재연구정보센터
Journal of Hazardous Materials, Vol.375, 233-240, 2019
The fate of DNAPL contaminants in non-consolidated subsurface systems - Discussion on the relevance of effective source zone geometries for plume propagation
Dense non-aqueous phase liquids, i.e., DNAPLs and the evolving contaminant plumes in aquifers provide significant potential to pose hazards affecting both environment and human health. Therefore, a proper assessment of contaminant spreading within the subsurface is critical. This includes a sufficient characterization of governing parameters describing both the subsurface and the contaminant itself. Thereby, knowledge on the contaminant source zone and especially the source zone geometry, i.e., SZG is critically required, yet very uncertain. This study identifies current limitations and open research questions in the formation and shape determination of source zone geometry, as well as its relevance for contaminant plumes. Our literature review reveals that existing characterization methods are subject to data interpretation uncertainties, while the application of these methods on field scale is limited by technical demands and accompanied efforts. In a next step, methods to implement increased source zone information into calculation methods are discussed. By means of an exemplary application of selected assessment tools, i.e., plume response models, results clearly proof the relevance of SZGs for site assessment. However, existing plume response models consider over-simplified geometries that may compromise their suitability. Our findings identify the demand for improved characterization of complex SZGs and the need to better evaluate the dependency of DNAPL migration on system properties and external influences. With emphasized knowledge on the most relevant SZG features, the delineation of "effective" SZGs allowing for straightforward implementation into plume response models and an adaption of the latter to incorporate more information on SZGs should be possible.