화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.123, No.22, 4796-4805, 2019
Performance of ACE-Reaction on 26 Organic Reactions for Fully Automated Reaction Network Construction and Microkinetic Analysis
Accurate analysis of complex chemical reaction networks is necessary for reliable prediction of reaction mechanism. Though quantum chemical methods provide a desirable accuracy, large computational costs are unavoidable as considering numerous reaction pathways on the networks. We proposed a graph-theoretic approach combined with chemical heuristics (named ACE-Reaction) in previous work [Chem. Sci. 2018, 9, 825], which automatically and rapidly finds out the most essential part of reaction networks just from reactants and products, and here we extended it by incorporating a stochastic approach for microkinetic modeling. To show its performance and broad applicability, we applied it to 26 organic reactions, which include 16 common functional groups. As a result, we could demonstrate that ACE-Reaction successfully found the accepted mechanism of all reactions, most within a few hours on a single workstation, and additional microkinetic modeling automatically discovered new competitive paths as well as a major path.