화학공학소재연구정보센터
Journal of the American Ceramic Society, Vol.102, No.8, 4929-4942, 2019
The effect of B-site Y substitution on cubic phase stabilization in (Ba0.5Sr0.5)(Co0.8Fe0.2)O3-delta
The cubic phase mixed ionic-electronic conductor (Ba0.5Sr0.5)(Co0.8Fe0.2)O3-delta (BSCF) is well-known for its excellent oxygen ion conductivity and high catalytic activity. However, formation of secondary phases impedes oxygen ion transport and consequentially a widespread application of BSCF as oxygen transport membrane. B-cation substitution by 1, 3 and 10 at.% Y was employed in this work for stabilization of the cubic BSCF phase. Secondary phase formation was quantified on bulk and powder samples exposed to temperatures between 640 and 1100 degrees C with annealing time up to 44 days. The phase composition, cation valence states, and chemical composition of all samples were analyzed by high-resolution analytical electron microscopic techniques. Y doping effectively suppresses the formation of Ban+1ConO3n+3(Co8O8) (n >= 2) and CoxOy phases which would otherwise act as nucleation centers for the highly undesirable hexagonal BSCF phase. This work validates for 10 at.% Y cation substitution perfect stabilization of the cubic BSCF phase at temperatures >= 800 degrees C, while a negligible small volume fraction of the hexagonal BSCF phase was found at lower temperatures. A newly developed model describes the effect of Y doping on the formation of secondary phases and their effective suppression with increasing Y concentration.