화학공학소재연구정보센터
Journal of the Electrochemical Society, Vol.166, No.12, F805-F809, 2019
A Nano-Structured SOFC Composite Cathode Prepared via Infiltration of La0.5Ba0.25Sr0.25Co0.8Fe0.2O3-delta into La0.9Sr0.1Ga0.8Mg0.2O3-delta for Extended Triple-Phase Boundary Area
Mixed ionic and electronic conductors (MIECs) show greatly enhanced electrochemical properties as cathode materials for intermediate-temperature solid oxide fuel cells (IT-SOFCs). Among promising MIEC candidates, La0.5Ba0.25Sr0.25Co0.8Fe0.2O3-delta (LBSCF) is chosen as a cathode material in this study due to its high oxygen ion diffusivity and oxygen reduction reaction (ORR) activity. It is well known that the composite configuration with superior oxygen ion conductor, e.g., La0.9Sr0.1Ga0.8Mg0.2O3-delta (LSGM), results in the improvement of cell performance. Here, we successfully fabricate the LBSCF-LSGM composite cathode by infiltration method at a low sintering temperature (< 800 degrees C), and thus nanoparticles are uniformly distributed on the LSGM porous scaffold. A half-cell exhibits an extremely low area-specific resistances (ASRs) of 0.010, 0.020, and 0.049 degrees cm(2) at 700, 650, and 600 degrees C, respectively. Further, the peak power density about 0.9 W cm(-2) is attained at 700 degrees C, suggesting that infiltrated LBSCF-LSGM composite demonstrates sufficient ORR activities at an intermediate temperature and thus to be a highly promising cathode material for IT-SOFCs. (c) 2019 The Electrochemical Society.