화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.78, 265-270, October, 2019
Highly efficient solution-processed blue organic light-emitting diodes based on thermally activated delayed fluorescence emitters with spiroacridine donor
E-mail:,
High-efficiency solution-processed blue organic light-emitting diodes (OLEDs) were developed using two thermally activated delayed fluorescence (TADF) aromatic molecules, 10-(4-(4,6-diphenyl-1,3,5- triazin-2-yl)-2,5-dimethylphenyl)-10H-spiro[acridine-9,90-fluorene] (TXSA) and 10-(4-(4,6-diphenyl- 1,3,5-triazin-2-yl)-2-methylphenyl)-10H-spiro[acridine-9,90-fluorene] (TTSA), composed of spiroacridine donor and triazine acceptor units. As a result, the blue devices based on two novel TADF molecules exhibited remarkable electroluminescence with a high quantum efficiency of 14.94% and current efficiency of 29.29 cd/A by optimization of emitter doping concentration and properties of the electron transporting layer. Our results demonstrate that TXSA and TTSA TADF molecules are prospective materials to fabricate high-performance solution-processed blue OLEDs with a simple device structure.
  1. Bui TT, Goubard F, Ibrahim-Ouali M, Gigmes D, Dumur F, Appl. Sci., 8, 494 (2018)
  2. Zhou L, Yu M, Chen X, Nie S, Lai WY, Su W, Cui Z, Huang W, Adv. Funct. Mater., 28, 170595 (2018)
  3. Mianev B, Baryshnikov G, Agren H, Phys. Chem. Chem. Phys., 16, 1719 (2104)
  4. Xu RP, Li YQ, Tang YX, J. Mater. Chem. C, 4, 9116 (2016)
  5. Im Y, Byun SY, Kim JH, Lee DR, Oh CS, Yook KS, Lee JY, Adv. Funct. Mater., 27, 160300 (2017)
  6. Zhou G, Wong WY, Suo S, J. Photochem. Photobio. C Photochem. Rev., 11, 133 (2010)
  7. Song W, Lee JY, J. Phys. D-Appl. Phys., 48, 365106 (2015)
  8. Liu Y, Xie G, Wu K, Luo Z, Zhou T, Zeng X, Yu J, Gong S, Yang C, J. Mater. Chem. C, 4, 4402 (2016)
  9. Kim JH, Yun JH, Lee LY, Adv. Opt. Mater., 6, 180025 (2018)
  10. Chen X, Yang Z, Xie Z, Zhao J, Yang Z, Zhang Y, Aldred MP, Chi Z, Mater. Chem. Front., 2, 1017 (2018)
  11. Wong MY, Zysman-Colman E, Adv. Mater., 29, 160544 (2017)
  12. Endo A, Sato K, Yoshimura K, Kai T, Kawada A, Miyazaki H, Adachi C, Appl. Phys. Lett., 98, 083302 (2011)
  13. Zhang L, Cheah KW, Sci. Rep., 8, 8832 (2018)
  14. Albrecht K, Matsuoka K, Yokoyama D, Sakai Y, Nakayama A, Fujita K, Yamamoto K, Chem. Commun., 53, 2439 (2017)
  15. Hladk I, Volyniuk D, Bezvikonnyi O, Kinzhybalo V, Bednarchuk TJ, Danyliv Y, Lytvyn R, Lazauskas A, Grazulevicius JV, J. Mater. Chem. C, 6, 13179 (2018)
  16. Skuodis E, Bezvikonnyi O, Tomkeviciene A, Volyniuk D, Mimaite V, Lazauskas A, Bucinskas A, Keruckiene R, Sini G, Grazulevicius JV, Org. Electron., 63, 29 (2018)
  17. Feng Y, Lu T, Liu D, Jiang W, Sun Y, Org. Electron., 67, 136 (2019)
  18. Cho YJ, Chin BD, Jeon SK, Lee JY, Adv. Funct. Mater., 25(43), 6786 (2015)
  19. Tsai KW, Hung MK, Mao YH, Chen SA, Adv. Funct. Mater., 29, 190102 (2019)
  20. Jeon SK, Park HJ, Lee JY, ACS Appl. Mater. Interfaces, 10, 5700 (2018)
  21. Chatterjee T, Wong KT, Adv. Opt. Mater., 7, 180056 (2019)
  22. Woo SJ, Kim Y, Kwon SK, Kim YH, Kim JJ, ACS Appl. Mater. Interfaces, 11, 7199 (2019)
  23. Lee J, Lee JI, Song KI, Lee SJ, Chu HY, Appl. Phys. Lett., 92, 133304 (2008)
  24. Song W, Lee IH, Hwang SH, Lee JY, Org. Electron., 138, 2015
  25. Yook KS, Lee JY, Org. Electron., 12, 1293 (2011)
  26. Jeon SO, Jang SE, Son HS, Lee JY, Adv. Mater., 23(12), 1436 (2011)