Journal of Industrial and Engineering Chemistry, Vol.78, 265-270, October, 2019
Highly efficient solution-processed blue organic light-emitting diodes based on thermally activated delayed fluorescence emitters with spiroacridine donor
E-mail:,
High-efficiency solution-processed blue organic light-emitting diodes (OLEDs) were developed using two thermally activated delayed fluorescence (TADF) aromatic molecules, 10-(4-(4,6-diphenyl-1,3,5- triazin-2-yl)-2,5-dimethylphenyl)-10H-spiro[acridine-9,90-fluorene] (TXSA) and 10-(4-(4,6-diphenyl- 1,3,5-triazin-2-yl)-2-methylphenyl)-10H-spiro[acridine-9,90-fluorene] (TTSA), composed of spiroacridine donor and triazine acceptor units. As a result, the blue devices based on two novel TADF molecules exhibited remarkable electroluminescence with a high quantum efficiency of 14.94% and current efficiency of 29.29 cd/A by optimization of emitter doping concentration and properties of the electron transporting layer. Our results demonstrate that TXSA and TTSA TADF molecules are prospective materials to fabricate high-performance solution-processed blue OLEDs with a simple device structure.
- Bui TT, Goubard F, Ibrahim-Ouali M, Gigmes D, Dumur F, Appl. Sci., 8, 494 (2018)
- Zhou L, Yu M, Chen X, Nie S, Lai WY, Su W, Cui Z, Huang W, Adv. Funct. Mater., 28, 170595 (2018)
- Mianev B, Baryshnikov G, Agren H, Phys. Chem. Chem. Phys., 16, 1719 (2104)
- Xu RP, Li YQ, Tang YX, J. Mater. Chem. C, 4, 9116 (2016)
- Im Y, Byun SY, Kim JH, Lee DR, Oh CS, Yook KS, Lee JY, Adv. Funct. Mater., 27, 160300 (2017)
- Zhou G, Wong WY, Suo S, J. Photochem. Photobio. C Photochem. Rev., 11, 133 (2010)
- Song W, Lee JY, J. Phys. D-Appl. Phys., 48, 365106 (2015)
- Liu Y, Xie G, Wu K, Luo Z, Zhou T, Zeng X, Yu J, Gong S, Yang C, J. Mater. Chem. C, 4, 4402 (2016)
- Kim JH, Yun JH, Lee LY, Adv. Opt. Mater., 6, 180025 (2018)
- Chen X, Yang Z, Xie Z, Zhao J, Yang Z, Zhang Y, Aldred MP, Chi Z, Mater. Chem. Front., 2, 1017 (2018)
- Wong MY, Zysman-Colman E, Adv. Mater., 29, 160544 (2017)
- Endo A, Sato K, Yoshimura K, Kai T, Kawada A, Miyazaki H, Adachi C, Appl. Phys. Lett., 98, 083302 (2011)
- Zhang L, Cheah KW, Sci. Rep., 8, 8832 (2018)
- Albrecht K, Matsuoka K, Yokoyama D, Sakai Y, Nakayama A, Fujita K, Yamamoto K, Chem. Commun., 53, 2439 (2017)
- Hladk I, Volyniuk D, Bezvikonnyi O, Kinzhybalo V, Bednarchuk TJ, Danyliv Y, Lytvyn R, Lazauskas A, Grazulevicius JV, J. Mater. Chem. C, 6, 13179 (2018)
- Skuodis E, Bezvikonnyi O, Tomkeviciene A, Volyniuk D, Mimaite V, Lazauskas A, Bucinskas A, Keruckiene R, Sini G, Grazulevicius JV, Org. Electron., 63, 29 (2018)
- Feng Y, Lu T, Liu D, Jiang W, Sun Y, Org. Electron., 67, 136 (2019)
- Cho YJ, Chin BD, Jeon SK, Lee JY, Adv. Funct. Mater., 25(43), 6786 (2015)
- Tsai KW, Hung MK, Mao YH, Chen SA, Adv. Funct. Mater., 29, 190102 (2019)
- Jeon SK, Park HJ, Lee JY, ACS Appl. Mater. Interfaces, 10, 5700 (2018)
- Chatterjee T, Wong KT, Adv. Opt. Mater., 7, 180056 (2019)
- Woo SJ, Kim Y, Kwon SK, Kim YH, Kim JJ, ACS Appl. Mater. Interfaces, 11, 7199 (2019)
- Lee J, Lee JI, Song KI, Lee SJ, Chu HY, Appl. Phys. Lett., 92, 133304 (2008)
- Song W, Lee IH, Hwang SH, Lee JY, Org. Electron., 138, 2015
- Yook KS, Lee JY, Org. Electron., 12, 1293 (2011)
- Jeon SO, Jang SE, Son HS, Lee JY, Adv. Mater., 23(12), 1436 (2011)