화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.78, 421-424, October, 2019
Porous cellulose acetate membranes prepared by water pressure-assisted process for water-treatment
E-mail:,
We fabricated membranes by adding the inorganic additive, Ni(NO3)2·6H2O, to cellulose acetate (CA) polymer. When subjected to water pressure, the polymer chain was weakened by the plasticizing effect of Ni(NO3)2·6H2O contained in the CA. The water pressure was varied by applying a range of distilled water pressure from 0 to 10 bar and well-formed pores were confirmed by SEM images. When water-pressure was applied for pore-generation, the flux of distilled water was about 50 LMH at a maximum pressure of 8 bar. In addition, the water treatment performance in terms of separation of a 200 ppm sodium alginate solution was 75% or more for all the membranes prepared, from 3 to 10 bar; the maximum salt rejection was 89% at 7 bar. The physical and chemical properties of the membranes were investigated using TGA and FT-IR. The porosity of the membrane was also confirmed using a porosimeter.
  1. UNDP (Ed.), Beyond Scarcity: Power, Poverty and the Global Water Crisis, UNDP, New York, NY, 2006 Human development report.
  2. Goel V, Mandal UK, Korean J. Chem. Eng., 36(4), 573 (2019)
  3. Jiao Z, Zhou L, Wu M, Gao K, Su Y, Jiang Z, Korean J. Chem. Eng., 35(12), 2487 (2018)
  4. Park CH, Lee JH, Jung JP, Lee W, Ryu DY, Kim JH, Angew. Chem.-Int. Edit., 131, 1155 (2019)
  5. Elimelech M, Phillip WA, Science, 333(6043), 712 (2011)
  6. Nematollahi MH, Babaei S, Abedini R, Korean J. Chem. Eng., 36(5), 763 (2019)
  7. Hwang BC, Oh SH, Lee MS, Lee DH, Park KP, Korean J. Chem. Eng., 35(11), 2290 (2018)
  8. IHS, Chemical Economics Handbook, Sodium Chloride, SRI International, 2013.
  9. Lin CF, Wu CH, Lai HT, Sep. Purif. Technol., 60(3), 292 (2008)
  10. Yuan W, Zydney AL, J. Membr. Sci., 157(1), 1 (1999)
  11. Lee N, Amy G, Croue JP, Buisson H, Water Res., 38, 4511 (2004)
  12. Bhattacharyya S, Mastai Y, Panda RN, J. Nanomater, 2014, 2 (2014)
  13. Sneddon G, Greenaway A, Yiu HHP, Adv. Eng. Mater., 4, 1 (2014)
  14. Fehrmann R, Riisager A, Haumann M, Supported Ionic Liquids: Fundamentals and Applications, Willey-VCH, Weinheim, 2014.
  15. Yang CC, Li YJJ, Liou TH, Desalination, 276(1-3), 366 (2011)
  16. Ma XH, Xu ZL, Liu Y, Sun D, J. Membr. Sci., 360(1-2), 315 (2010)
  17. Wu CM, Wu YH, Luo JY, Xu TW, Fu YX, J. Membr. Sci., 356(1-2), 96 (2010)
  18. Jin LM, Shi WX, Yu SL, Yi XS, Sun N, Ma C, Liu YS, Desalination, 298, 34 (2012)
  19. Souza VC, Quadri MGN, Braz. J. Chem. Eng., 30, 683 (2013)
  20. Mishra SB, Sachan S, Mishra PK, Ramesh MR, Procedia Mater. Sci., 5, 123 (2014)
  21. Chung TS, Chng ML, Pramoda KP, Xiao YC, Langmuir, 20(7), 2966 (2004)
  22. Tomalia DA, Macromol. Symp., 101, 243 (1996)
  23. Wang L, Song XJ, Wang T, Wang SZ, Wang ZN, Gao CJ, Appl. Surf. Sci., 330, 118 (2015)
  24. Qian L, Ahmed A, Foster A, Rannard SP, Cooper AI, Zhang H, J. Mater. Chem., 19, 5212 (2009)
  25. Lloyd DR, Kim SS, Kinzer KE, J. Membr. Sci., 64, 1 (1991)
  26. Kinzer KE, Lloyd DR, Proceedings of the ACS Division of Polymeric Materials: Science & Engineering 61, 794 (1989).
  27. Mo D, Liu JD, Duan JL, Yao HJ, Latif H, Cao DL, Chen YH, Zhang SX, Zhai PF, Liu J, J. Membr. Sci., 333, 58 (2014)
  28. Yamazaki IM, Paterson R, Geraldo LP, J. Membr. Sci., 118(2), 239 (1996)
  29. Clochard MC, Wade TL, Wegrowe JE, Balanzat E, Nucl. Instrum. Methods Phys. Res. Sect. B, 265, 325 (2007)
  30. Apel PY, Blonskaya IV, Dmitriev SN, Orelovitch OL, Sartowska B, J. Membr. Sci., 282(1-2), 393 (2006)
  31. Trautmann C, Bruchle W, Spohr R, Vetter J, Angert N, Nucl. Instrum. Methods Phys. Res. Sect. B, 111, 70 (1996)
  32. Zhao J, Luo G, Wu J, Xia H, ACS Appl. Mater. Interfaces, 5, 2040 (2013)
  33. Fu XY, Maruyama T, Sotani T, Matsuyama H, J. Membr. Sci., 320(1-2), 483 (2008)
  34. Roy D, Semsarilar M, Guthrie JT, Perrier S, J. Chem. Soc. Rev., 38, 2046 (2009)
  35. Lee WG, Kim DH, Jeon WC, Kwak SK, Kang SJ, Kang SW, Sci. Rep., 7, 1287 (2017)