화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.31, No.3, 167-177, August, 2019
Spreading behaviors of high-viscous nanofluid droplets impact on solid surfaces
E-mail:
In this work, the impact dynamics of high-viscous nanofluid droplets onto a solid surface has been investigated experimentally by means of high-speed camera visualization technique. We dispersed various nanoparticles (multiwall carbon nanotube (MWCNT), nano-graphene, and nano-graphite powder) into highviscous base fluid (epoxy resin) to obtain the stable and homogenous nanofluids without surfactant additives. The well dispersed nanofluids show different degree of shear-thinning behaviors, and the shear-thinning properties of those fluids have been characterized by the power-law rheology model. The dynamic contact angle (DCA), transient dimensionless height, and transient contacting factor along with the spreading time under different Weber numbers (We) have been investigated. The results show that the nanofluid with a lower shear viscosity over the entire range of the shear rates results in larger variations of the contacting factor and the dimensionless height. The effect of surface wettability on droplet impact behaviors is more significant for the fluid with higher shear viscosity and less shear-thinning degree during the receding phase. The latter spreading and receding motions of the droplet with higher shear viscosity and shearthinning degree are suppressed significantly, regardless of the Weber numbers in current study. Finally, a model based on experimental data has been proposed to predict the maximum spreading factor of high-viscous droplet impact on solid surface.
  1. An SM, Lee SY, Exp. Therm. Fluid Sci., 37, 37 (2012)
  2. Andrade R, Skurtys O, Osorio F, J. Food Eng., 157, 70 (2015)
  3. Attane P, Girard F, Morin V, Phys. Fluids, 19, 012101 (2007)
  4. Bartolo D, Boudaoud A, Narcy G, Bonn D, Phys. Rev. Lett., 99, 174502 (2007)
  5. Bergeron V, Bonn D, Martin JY, Vovelle L, Nature, 405, 772 (2000)
  6. Bertola V, Int. J. Heat Mass Transf., 85, 430 (2015)
  7. Boyer F, Sandoval-Nava E, Snoeijer JH, Dijksman JF, Lohse D, Phys. Rev. Fluids, 1, 013901 (2016)
  8. Breitenbach J, Kissing J, Roisman IV, Tropea C, Exp. Therm. Fluid Sci., 98, 516 (2018)
  9. Choi SUS, ASME, FED 231, 99 1995.
  10. Clanet C, Beguin C, Richard D, Quere D, J. Fluid Mech., 517, 1999 (2004)
  11. Derby B, Science, 338(6109), 921 (2012)
  12. Duan F, Wong T, Crivoi A, Nanoscale Res. Lett., 7, 360 (2012)
  13. Eggers J, Fontelos MA, Josserand C, Zaleski S, Phys. Fluids, 22, 062101 (2010)
  14. Finotello G, De S, Vrouwenvelder JCR, Padding JT, Buist KA, Jongsma A, Innings F, Kuipers JAM, Exp. Fluids, 59, 113 (2018)
  15. German G, Bertola V, J. Phys.-Condens. Matter, 21, 37511 (2009)
  16. Hadadian M, Goharshadi EK, Youssefi A, J. Nanopart. Res., 16, 2788 (2014)
  17. Hao C, Zhou Y, Zhou X, Che L, Chu B, Wang Z, Appl. Phys. Lett., 109, 021601 (2016)
  18. Jiang LQ, Gao L, Sun J, J. Colloid Interface Sci., 260(1), 89 (2003)
  19. Jiao Z, Li F, Xie L, Liu X, Chi B, Yang W, J. Appl. Polym. Sci., 135, 45933 (2018)
  20. Josserand C, Thoroddsen ST, Annu. Rev. Fluid Mech., 48, 365 (2016)
  21. Kole M, Dey TK, J. Appl. Phys., 113, 084307 (2013)
  22. Li Y, Wang F, Liu H, Wu H, Microfluid. Nanofluid., 18, 111 (2015)
  23. Liu HL, Moon JS, Hwang WR, Korea-Aust. Rheol. J., 24(4), 297 (2012)
  24. Ma AWK, Chinesta F, Mackley MR, J. Rheol., 53(3), 547 (2009)
  25. Macosko CW, Rheology: Principles, Measurements, and Applications 1994.
  26. Mandani S, Norouzi M, Shahmardan MM, Korea-Aust. Rheol. J., 30(2), 99 (2018)
  27. Masiri SM, Bayareh M, Nadooshan AA, Korea-Aust. Rheol. J., 31(1), 25 (2019)
  28. Mehrali M, Sadeghinezhad E, Rashidi MM, Akhiani AR, Latibari ST, Mehrali M, Metselaar HSC, J. Nanopart. Res., 17, 1 (2015)
  29. Moghaddam MB, Goharshadi EK, Entezari MH, Nancarrow P, Chem. Eng. J., 231, 365 (2013)
  30. Moon JH, Lee JB, Lee SH, Mater. Trans., 54, M20122 (2013)
  31. Mourougou-Candoni N, Prunet-Foch B, Legay F, Vignes-Adler M, Wong K, Langmuir, 15(19), 6563 (1999)
  32. Murshed SMS, Estelle P, Renew. Sust. Energ. Rev., 76, 1134 (2017)
  33. Ozerinc S, Kakac S, Yazicioglu AG, Microfluid. Nanofluid., 8, 145 (2010)
  34. Park C, Ounaies Z, Watson KA, Crooks RE, Smith J, Lowther SE, Connell JW, Siochi EJ, Harrison JS, Clair TLS, Chem. Phys. Lett., 364(3-4), 303 (2002)
  35. Richter B, Dullenkopf K, Bauer HJ, Exp. Fluids, 39, 351 (2005)
  36. Rioboo R, Marengo M, Tropea C, Exp. Fluids, 33, 112 (2002)
  37. Roisman IV, Berberovic E, Tropea C, Phys. Fluids, 21, 052103 (2009)
  38. Rozhkov A, Prunet-Foch B, Vignes-Adler M, Proc. R. Soc. A-Math. Phys. Eng. Sci., 466, 2897 (2010)
  39. Scheller BL, Bousfield DW, AIChE J., 41(6), 1357 (1995)
  40. Srikar R, Gambaryan-Roisman T, Steffes C, Stephan P, Tropea C, Yarin AL, Int. J. Heat Mass Transf., 52(25-26), 5814 (2009)
  41. Stalder AF, Kulik G, Sage D, Barbieri L, Hoffmann P, Colloids Surf. A: Physicochem. Eng. Asp., 286, 92 (2006)
  42. Vega EJ, Castrejon-Pita AA, Exp. Fluids, 58, 57 (2017)
  43. Wasan DT, Nikolov AD, Nature, 423, 156 (2003)
  44. Yarin AL, Annu. Rev. Fluid Mech., 38, 159 (2006)
  45. Yearsley KM, Mackley MR, Chinesta F, Leygue A, J. Rheol., 56(6), 1465 (2012)
  46. Yoo H, Kim C, Korea-Aust. Rheol. J., 27(2), 137 (2015)
  47. Zang D, Wang X, Geng X, Zhang Y, Chen Y, Soft Matter, 9, 394 (2013)
  48. Zhang L, Ku T, Cheng X, Song Y, Zhang D, Microfluid. Nanofluid., 22, 47 (2018)