화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.36, No.9, 1543-1547, September, 2019
Upcycling of lignin waste to activated carbon for supercapacitor electrode and organic adsorbent
E-mail:,
We introduce a facile strategy to upcycle lignin waste to valuable activated carbon (AC). Unlike conventional preparation processes of AC, such as high-temperature carbonization above 600 °Cfollowed by chemical or physical activation, we synthesized AC through low-carbonization (~300 °C), ball-milling, and thermal activation. Lowtemperature carbonization effectively led to the formation of the micro-pores and simultaneously high yield. Uniform activated morphology of char lignin is achieved through a ball-milling process. The as-synthesized AC exhibited a large specific surface area of 1075.18m2 g-1, high specific capacitance of 115.1 F g-1, and excellent adsorbability of 0.23 gtoluene per gactivated carbon. Therefore, we believe that the presented facile strategy could lead to the realization of upcycling of lignin waste to highly useful AC.
  1. Chatterjee S, Saito T, ChemSusChem., 8, 3941 (2015)
  2. Duval A, Lawoko M, React. Funct. Polym., 85, 78 (2014)
  3. Barta K, Anastas P, Beach E, Hansen T, Warner G, Foley P, U.S. Patent, 10,059,650 (2018).
  4. Belgacem MN, Gandini A, Monomers, polymers and composites from renewable resources, Amsterdam, Elsevier (2008).
  5. Joh HI, Song HK, Lee CH, Yun JM, Jo SM, Lee S, Na SI, Chien AT, Kumar S, Carbon, 70, 308 (2014)
  6. Joh HI, Song HK, Yi KB, Lee S, Carbon, 53, 409 (2013)
  7. Sircar S, Golden TC, Rao MB, Carbon, 34, 1 (1996)
  8. Suhas, Carrott PJM, Carrott MMLR, Bioresour. Technol., 98(12), 2301 (2007)
  9. Gao Z, Zhang Y, Song N, Li X, Mater. Res. Lett., 5, 69 (2017)
  10. DA, Hegde G, RSC Adv., 5, 88339 (2015)
  11. Kumar A, Hegde H, Manaf SABA, Ngaini Z, Sharma KV, Chem. Commun., 50, 12702 (2014)
  12. Gonzalez-Serrano E, Cordero T, Rodriguez-Mirasol J, Cotoruelo L, Rodriguez JJ, Water Res., 38, 3043 (2004)
  13. Paterson RJ, Lignin: properties and applications in biotechnology and bioenergy, Nova Science Publishers (2012).
  14. Yorgun S, Vural N, Demiral H, Microporous Mesoporous Mater., 122, 189 (2009)
  15. Lillo-Rodenas MA, Cazorla-Amoros D, Linares-Solano A, Carbon, 41, 267 (2003)
  16. Kou T, Yao B, Liu T, Li Y, J. Mater. Chem. A., 5, 17151 (2017)
  17. Ma X, Yang H, Yu L, Chen Y, Li Y, Materials, 7, 4431 (2014)
  18. Rodriguez-Mirasol J, Cordero T, Rodriguez JJ, Energy Fuels, 7, 133 (1993)
  19. Xie XF, Goodell B, Zhang DJ, Nagle DC, Qian YH, Peterson ML, Jellison J, Bioresour. Technol., 100(5), 1797 (2009)
  20. Kijima M, Hirukawa T, Hanawa F, Hata T, Bioresour. Technol., 102(10), 6279 (2011)
  21. Brebu M, Cazacu G, Chirila O, Cell. Chem. Technol., 45, 43 (2011)
  22. Brebu M, Vasile C, Cell. Chem. Technol., 44, 353 (2010)
  23. Alen R, Kuoppala E, Oesch P, J. Anal. Appl. Pyrolysis, 36, 137 (1996)
  24. Rodrigues J, Graca J, Pereira H, J. Anal. Appl. Pyrolysis, 58-59, 481 (2001)
  25. Yang D, Zhong LX, Yuan TQ, Peng XW, Sun RC, Ind. Crop. Prod., 43, 141 (2013)
  26. Oh K, Lee S, Park S, Ku BC, Lee SH, Bang YH, Joh HI, Sci. Adv. Mater., 9, 1566 (2017)
  27. Arenas E, Chejne F, Carbon, 42, 2451 (2004)
  28. Zolin A, Jensen AD, Jensen PA, Dam-Johansen K, Fuel, 81(8), 1065 (2002)
  29. Azargohar R, Dalai AK, Microporous Mesoporous Mater., 85, 219 (2005)
  30. Lashaki MJ, Fayaz M, Wang H, Hashisho Z, Philips JH, Anderson JE, Nichols M, Environ. Sci. Technol., 46, 4083 (2012)