Polymer(Korea), Vol.43, No.5, 674-679, September, 2019
바이오 폴리우레탄의 물성 및 점탄성에 대한 연구
Study on Mechanical Properties and Viscoelastic Properties of Bio-polyurethanes
E-mail:
초록
바이오매스 유래의 azelaic acid, 1,3-propanediol(1,3-PD)를 사용하여 바이오 폴리에스터 폴리올을 합성하였다. 합성한 폴리에스터 폴리올에 MDI(4,4'-methylenebis (phenyl isocyanate)), H12MDI and IPDI(isophorone diisocyanate)와 사슬연장제로 1,4-butanediol(1,4-BD)을 넣고 바이오 폴리우레탄을 합성하였다. 그리고 사슬연장제 없이 poly(1,4-butylene adipate)를 폴리올로 사용하여 일반 폴리우레탄을 합성하였다. 고분자 가공분석기(RPA)의 변형 스윕(strain sweep) 기능을 사용하여 제조된 폴리우레탄의 점탄성을 조사하였다. UTM, shore A, ball rebound 및 taber기계를 사용하여 폴리우레탄의 인장강도, 경도, 반발탄성 및 내마모성 측정을 통하여 기계적 물성을 확인하였다. 제조된 바이오 폴리우레탄은 일반 폴리우레탄보다 더 좋은 점탄성, 내마모성 및 신장률(elongation rate)을 보였다.
The bio-polyester polyol has been prepared by azelaic acid and 1,3-propanediol(1,3-PD) from biomass with esterification synthesis method, and MDI (4,4'-methylenebis (phenyl isocyanate)), H12MDI and IPDI (isophorone diisocyanate) were used as isocyanates, 1,4-butanediol(1,4-BD) was used as chain extender. It also had been set the general polyurethane with SS-106 polyol, and bio-polyurethane without chain extender as control groups. The viscoelastic behaviors of the bio-polyurethanes were explored using a rubber processing analyzer (RPA) in the mode of strain sweep. And the mechanical properties (tensile strength, hardness value, resilience, abrasion resistance) were characterized by UTM, shore A tester, ball rebound and taber abrasion resistance tester. From the results above, the bio-polyurethane which synthesized in this research with bio-polyester polyol showed better abrasion resistance, elongation rate and viscoelastic properties compared to the general polyurethane material as elastomers.
Keywords:bio-polyurethane;bio-polyester polyol;viscoelastic properties;abrasion resistance;mechanical properties
- Zia KM, Bhatti HN, Bhatti IA, React. Funct. Polym., 67(8), 675 (2007)
- Park SH, Oh KW, Kim SH, Compos. Sci. Technol., 86, 82 (2013)
- Carlsson AS, Biochimie, 91, 665 (2009)
- Ermis K, Midilli A, Dincer I, Rosen MA, Energ. Policy, 35, 1731 (2007)
- Datta J, Glowinska E, Ind. Crop. Prod., 61, 84 (2014)
- Hutton D, Stumpf PK, Arch. Biochem. Biophys., 142, 48 (1971)
- Gross RA, Ganesh M, Lu W, Trends Biothchnol., 28, 435 (2010)
- Jin KH, Cho UR, Elastomers Compos., 49, 31 (2014)
- Jin KH, Kim MS, Cho UR, Elastomers Compos., 48, 3 (2013)
- Felizardo P, Correia MJN, Raposo I, Mendes JF, Berkemeier R, Bordado JM, Waste Manage., 26, 487 (2007)
- Monteavaro LL, da Silva EO, Costa APO, Samios D, Gerbase AE, Perzhold CL, J. Am. Oil. Chem. Soc., 82, 365 (2005)
- Petrovic ZS, Zhang W, Javni I, Biomacromolecules, 6(2), 713 (2005)
- Choi SY, Cho UR, Elastomers Compos., 40, 249 (2005)
- Hwang SO, Lee BH, Cho UR, Elastomers Compos., 47, 238 (2012)
- Molino A, Lovane P, Donatelli A, Braccio G, Chianese S, Musmarra D, Chem. Eng. Trans., 32, 337 (2013)
- Jhon YK, Cheong IW, Kim JH, Colloids Surf. A: Physicochem. Eng. Asp., 179, 71 (2001)
- Vaidya UR, Nadkarni VM, J. Appl. Polym. Sci., 35, 775 (1988)
- Pawlik H, Prociak A, J. Polym. Environ., 20, 438 (2012)
- Koerner H, Price G, Pearce NA, Alexander M, Vaia RA, Nat. Mater., 3(2), 115 (2004)
- Uemura K, Matsuda R, Kitagawa S, J. Solid State Chem., 178, 2420 (2005)