화학공학소재연구정보센터
Polymer(Korea), Vol.43, No.5, 674-679, September, 2019
바이오 폴리우레탄의 물성 및 점탄성에 대한 연구
Study on Mechanical Properties and Viscoelastic Properties of Bio-polyurethanes
E-mail:
초록
바이오매스 유래의 azelaic acid, 1,3-propanediol(1,3-PD)를 사용하여 바이오 폴리에스터 폴리올을 합성하였다. 합성한 폴리에스터 폴리올에 MDI(4,4'-methylenebis (phenyl isocyanate)), H12MDI and IPDI(isophorone diisocyanate)와 사슬연장제로 1,4-butanediol(1,4-BD)을 넣고 바이오 폴리우레탄을 합성하였다. 그리고 사슬연장제 없이 poly(1,4-butylene adipate)를 폴리올로 사용하여 일반 폴리우레탄을 합성하였다. 고분자 가공분석기(RPA)의 변형 스윕(strain sweep) 기능을 사용하여 제조된 폴리우레탄의 점탄성을 조사하였다. UTM, shore A, ball rebound 및 taber기계를 사용하여 폴리우레탄의 인장강도, 경도, 반발탄성 및 내마모성 측정을 통하여 기계적 물성을 확인하였다. 제조된 바이오 폴리우레탄은 일반 폴리우레탄보다 더 좋은 점탄성, 내마모성 및 신장률(elongation rate)을 보였다.
The bio-polyester polyol has been prepared by azelaic acid and 1,3-propanediol(1,3-PD) from biomass with esterification synthesis method, and MDI (4,4'-methylenebis (phenyl isocyanate)), H12MDI and IPDI (isophorone diisocyanate) were used as isocyanates, 1,4-butanediol(1,4-BD) was used as chain extender. It also had been set the general polyurethane with SS-106 polyol, and bio-polyurethane without chain extender as control groups. The viscoelastic behaviors of the bio-polyurethanes were explored using a rubber processing analyzer (RPA) in the mode of strain sweep. And the mechanical properties (tensile strength, hardness value, resilience, abrasion resistance) were characterized by UTM, shore A tester, ball rebound and taber abrasion resistance tester. From the results above, the bio-polyurethane which synthesized in this research with bio-polyester polyol showed better abrasion resistance, elongation rate and viscoelastic properties compared to the general polyurethane material as elastomers.
  1. Zia KM, Bhatti HN, Bhatti IA, React. Funct. Polym., 67(8), 675 (2007)
  2. Park SH, Oh KW, Kim SH, Compos. Sci. Technol., 86, 82 (2013)
  3. Carlsson AS, Biochimie, 91, 665 (2009)
  4. Ermis K, Midilli A, Dincer I, Rosen MA, Energ. Policy, 35, 1731 (2007)
  5. Datta J, Glowinska E, Ind. Crop. Prod., 61, 84 (2014)
  6. Hutton D, Stumpf PK, Arch. Biochem. Biophys., 142, 48 (1971)
  7. Gross RA, Ganesh M, Lu W, Trends Biothchnol., 28, 435 (2010)
  8. Jin KH, Cho UR, Elastomers Compos., 49, 31 (2014)
  9. Jin KH, Kim MS, Cho UR, Elastomers Compos., 48, 3 (2013)
  10. Felizardo P, Correia MJN, Raposo I, Mendes JF, Berkemeier R, Bordado JM, Waste Manage., 26, 487 (2007)
  11. Monteavaro LL, da Silva EO, Costa APO, Samios D, Gerbase AE, Perzhold CL, J. Am. Oil. Chem. Soc., 82, 365 (2005)
  12. Petrovic ZS, Zhang W, Javni I, Biomacromolecules, 6(2), 713 (2005)
  13. Choi SY, Cho UR, Elastomers Compos., 40, 249 (2005)
  14. Hwang SO, Lee BH, Cho UR, Elastomers Compos., 47, 238 (2012)
  15. Molino A, Lovane P, Donatelli A, Braccio G, Chianese S, Musmarra D, Chem. Eng. Trans., 32, 337 (2013)
  16. Jhon YK, Cheong IW, Kim JH, Colloids Surf. A: Physicochem. Eng. Asp., 179, 71 (2001)
  17. Vaidya UR, Nadkarni VM, J. Appl. Polym. Sci., 35, 775 (1988)
  18. Pawlik H, Prociak A, J. Polym. Environ., 20, 438 (2012)
  19. Koerner H, Price G, Pearce NA, Alexander M, Vaia RA, Nat. Mater., 3(2), 115 (2004)
  20. Uemura K, Matsuda R, Kitagawa S, J. Solid State Chem., 178, 2420 (2005)