Polymer(Korea), Vol.43, No.5, 764-770, September, 2019
충격시험을 이용한 압전고분자 PVDF 센서의 특성
Characteristics of Piezoelectric Polymeric PVDF Sensor by Impact Testing
E-mail:
초록
근거리 전기방사법을 이용하여 유량속도 139 nL/min, 전기장 세기 12 kV/cm, 콜렉터 속도 500 mm/s로 18 wt% 폴리(비닐리덴 플루오라이드)(PVDF) 섬유를 제조하였다. PVDF 섬유 모듈은 폴리(에틸렌 테레프탈레이트) 필름 위에 위치하였다. 모듈은 0.5 mm 간격으로 섬유 20줄로 구성되어 있다. 압전성과 진동 센서특성은 Al 외팔보를 이용한 충격실험을 통해 조사하였다. PVDF 센서와 lead zirconate titanate(PZT) 센서는 Al 외팔보 양면 끝에서 5 mm 위치에 에폭시를 이용 부착하였다. PVDF 센서의 전압특성은 PZT 센서보다 200배 정도 작았지만 출력 특성 파형은 유사하였다. 파장 측정 결과, 두 센서 모두 Al 외팔보의 고유 파장에서 관찰되었다.
The 18 wt% poly(vinylidene fluoride) (PVDF) fibers were near-field electrospun at a flow rate of 139 nL/min, an electric field of 12 kV/cm, and a collector speed of 500 mm/s. A PVDF fiber array consisting of 20 fibers was adhered to the flexible PET film. A PVDF and a lead zirconate titanate (PZT) sensors were attached at a distance of 5 mm from the clamped end of the Al cantilever. The vibration sensing capabilities of sensors were examined by measuring the potential generated by the sensors during impact testing. Although the voltage of PVDF sensor was 200 times smaller than that of PZT sensor, the waveforms of the sensor output were similar. Both sensors were determined to be sensitive to variations in the level of dynamic strain due to the inherent piezoelectricity. The spectral results of both sensors exhibited the same signal generated by natural frequency of cantilever.
- Calvert P, Nature, 256, 694 (1975)
- Chang C, Tran VH, Wang J, Fuh Y, Lin L, Nano Lett., 10, 726 (2010)
- Sun D, Chang C, Li S, Lin L, Nano Lett., 6, 839 (2006)
- Huang YYS, Terentjev EM, Oppenheim T, Lacour SP, Welland ME, Nanotechnology, 23, 105305 (2012)
- He X, Zheng J, Yu G, You M, Yu M, Ning X, Long Y, J. Phys. Chem., 121, 8663 (2017)
- Rho J, Lee DY, Lee M, Kim B, Jeong H, J. Korean Cryst. Growth Cryst. Technol., 28, 1 (2018)
- Wang Y, Ren K, Zhang QM, Appl. Phys. Lett., 91, 222905 (2007)
- Liu ZH, Pan CT, Su CY, Lin LW, Chen YJ, Tsai JS, Sens. Actuators A-Phys., 211, 78 (2014)
- Oh GY, Rho JW, Lee DY, Lee MH, Kim YZ, Macromol. Res., 26(1), 48 (2018)
- Abas Z, Yang DH, Kim HS, Kwak MK, Kim J, Intl. J. Appl. Mech., 7, 155006 (2015)
- Shirinov AV, Schomburg WK, Sens. Actuators A-Phys., 142, 48 (2008)
- Rathod VT, Mahapatra DR, Jain A, Gayathri A, Sens. Actuators A-Phys., 163, 164 (2010)
- Lee DY, Lee M, Kim KJ, Heo S, Kim B, Lee S, Surf. Coat. Technol., 200, 1920 (2005)
- Lee DY, Park I, Lee M, Kim KJ, Heo S, Sens. Actuators A-Phys., 133, 117 (2007)
- Lee DY, Cho J, Kim Y, Oh Y, J. Korean Sens. Soc., 17, 281 (2008)
- Lee CY, Kim Y, Lee S, Lee M, Lee J, Kim B, Cho N, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 28, 294 (2008)
- Stoppa M, Chiolerio A, Sens., 14, 11957 (2014)
- Hwang GT, Park H, Lee JH, Oh S, Park KI, Byun M, Park H, Ahn G, Jeong CK, No K, Kwon H, Lee SG, Joung B, Lee KJ, Adv. Mater., 26(28), 4880 (2014)
- Qi Y, McAlphine MC, Energy Environ. Sci., 3, 1275 (2010)