Journal of Industrial and Engineering Chemistry, Vol.79, 364-369, November, 2019
Hydrogen generation using Pt/Ni bimetallic nanoparticles supported on Fe3O4@SiO2@TiO2 multi-shell microspheres
E-mail:
Sodium borohydride (NaBH4) is one of the most popular reagents used to store large amounts of hydrogen. Noble metals (Pt and Pd) as heterogeneous catalysts are commonly utilized to accelerate the NaBH4 hydrolysis for H2 evolution. To overcome the high-production costs for such metals and to enhance their catalytic performance, extensive studies on bimetallic catalysts have been broadly conducted. In liquid reactions, nanoparticles (NPs) of these metals can be implemented as active catalysts. However, unsupported NP catalysts readily aggregate between neighboring NPs, and their separation/recovery is not efficient with conventional methods. Therefore, herein, the magnetic-core and multi-shell silica/titania configuration was designed and bimetallic Pt/Ni NPs were embedded in Fe3O4@SiO2@TiO2 for H2 generation from NaBH4 hydrolysis. Over multiple runs, Pt/Ni NPs on [email protected]/Ni@TiO2 samples were successfully isolated and dispersed in the interlayer between the SiO2 inner-shell and the TiO2 outer-shell.
- Ozkar S, Zahmakiran M, J. Alloy. Compd., 404-406, 728 (2005)
- Amendola SC, Sharp-Goldman SL, Janjua MS, Spencer NC, Kelly MT, Petillo PJ, Binder M, Int. J. Hydrog. Energy, 25, 969 (2000)
- Domine ME, Iojoiu EE, Davidian T, Guilhaume N, Mirodatos C, Catal. Today, 133-135, 565 (2008)
- Chou CC, Hsieh CH, Chen BH, Energy, 90, 1973 (2015)
- Aranishi K, Singh AK, Xu Q, ChemCatChem, 5, 2248 (2013)
- Koska A, Toshikj N, Hoett S, Bernaud L, Demirci UB, J. Chem. Educ., 94, 1163 (2017)
- De S, Zhang J, Luque R, Yan N, Energy Environ. Sci., 9, 3314 (2016)
- Markovic NM, Schmidt TJ, Stamenkovic V, Ross PN, Fuel Cells, 1, 105 (2001)
- Jeon U, Joo JB, Kim Y, RSC Adv., 5, 55608 (2015)
- Ma Y, Wu XY, Zhang GK, Appl. Catal. B: Environ., 205, 262 (2017)
- Joo SH, Park JY, Tsung CK, Yamada Y, Yang PD, Somorjai GA, Nat. Mater., 8(2), 126 (2009)
- Li J, Liang X, Joo JB, Lee I, Ying Y, Zaera F, J. Phys. Chem. C, 117, 20043 (2013)
- Polshettiwar V, Luque R, Fihri A, Zhu HB, Bouhrara M, Bassett JM, Chem. Rev., 111(5), 3036 (2011)
- Hu Y, Zhang Q, Goebl J, Zhang T, Yin Y, Phys. Chem. Chem. Phys., 12, 11836 (2010)
- Zhang Q, Zhang T, Ge J, Yin Y, Nano Lett., 8, 2867 (2008)
- Lee I, Joo JB Yin Y, Zaera F, Angew. Chem.-Int. Edit., 50, 10208 (2011)
- Lee H, Jeong U, Kim Y, Joo JB, Top. Catal., 60, 763 (2017)
- Deng Y, Cai Y, Sun Z, Liu J, Liu C, Wei J, Li W, Liu C, Wang Y, Zhao D, J. Am. Ceram. Soc., 132, 8466 (2010)
- Joo JB, Zhang Q, Lee I, Dahl M, Zaera F, Yin YD, Adv. Funct. Mater., 22(1), 166 (2012)
- Gao X, Qi J, Wan S, Zhang W, Wang Q, Cao R, Small, 14, 180336 (2018)
- Liang Z, Zhang C, Yuan H, Zhang W, Zheng H, Cao R, Chem. Commun., 54, 7519 (2018)
- Zhao X, Zhang W, Cao R, J. Energy Chem, 26, 1210 (2017)
- Hui C, Shen C, Tian J, Bao L, Ding H, Li C, Tian Y, Shi X, Gao HJ, Nanoscale, 3, 701 (2011)
- Wang DS, Li YD, Adv. Mater., 23(9), 1044 (2011)
- Shylesh S, Schweizer J, Demeshko S, Schunemann V, Ernst S, Thiel WR, Adv. Synth. Catal., 351, 1789 (2009)
- Laursen AB, Varela AS, Dionigi F, Fanchiu H, Miller C, Trinhammer OL, Rossmeisl J, Dahl S, J. Chem. Educ., 89, 1595 (2012)
- Liu T, Wang K, Du G, Asiri AM, Sun X, J. Mater. Chem. A, 34, 13053 (2016)
- Xu DY, Dai P, Liu XM, Cao CQ, Guo QJ, J. Power Sources, 182(2), 616 (2008)
- Singh SK, Singh AK, Aranishi K, Xu Q, J. Am. Chem. Soc., 133(49), 19638 (2011)