화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.79, 431-436, November, 2019
Carbon-caged palladium catalysts supported on carbon nanofibers for proton exchange membrane fuel cells
E-mail:
The development of low-cost catalysts for the oxygen reduction reaction is an important step for the commercialization of proton-exchange membrane fuel cells. Pd is a robust catalytic material for this reaction and is considered as an alternative to Pt due to its similarity with Pt. However, since Pd is oxidized at a lower positive potential than Pt, it is less active and less stable than Pt in an oxygen reduction reaction. We developed a simple synthesis route for N-doped carbon-caged Pd catalysts supported on carbon nanofibers using Pd-polyaniline composites. Oxidative polymerization of aniline spontaneously produced Pd-polyaniline composites with the reduction of Pd ions. The subsequent heat treatment of Pd-polyaniline composites produced N-doped carbon-caged Pd catalysts, in which the polyaniline served as the source of the N-doped carbon cage. The catalytic activity and stability of the synthesized catalyst were dependent on the heat-treatment temperature and the synthesis method. The optimized catalyst heat-treated at 500 °C (Pd@NC/CNF500 (NDA, US)), which was synthesized with nondistilled aniline under ultrasound irradiation, exhibited higher catalytic activity and stability in oxygen reduction reaction than general Pd catalysts reported in literature. Pd@NC/CNF500 (NDA, US) showed high performance even in the unit cell test.
  1. Larminie J, Dicks A, Fuel Cell System Explained, second ed., John Wiley & Sons Ltd, England, 2000.
  2. Debe MK, Nature, 486(7401), 43 (2012)
  3. Shao MH, Chang QW, Dodelet JP, Chenitz R, Chem. Rev., 116(6), 3594 (2016)
  4. Sui S, Wang X, Zhou X, Su Y, Riffat S, Liu C, J. Mater. Chem. A, 5, 1808 (2017)
  5. Strickland N, Miner E, Jia Q,Tylus U, Ramaswamy N, Liang W, Sougrati MT, Jaouen F, Mukerjee S, Nat. Commun., 6, 7343 (2015)
  6. Artyushkova K, Serov A, Rojas-Carbonell S, Atanassov P, J. Phys. Chem., 119, 25917 (2015)
  7. Wu G, Zelenay P, Accounts Chem. Res., 46, 1878 (2013)
  8. Wu G, Santandreu A, Kellogg W, Gupta S, Ogoke O, Zhang H, Wang HL, Dai L, Nano Energy, 29, 83 (2016)
  9. Shao M, J. Power Sources, 196(5), 2433 (2011)
  10. Antolini E, Zignani SC, Santos SF, Gonzalez ER, Electrochim. Acta, 56(5), 2299 (2011)
  11. Norskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jonsson H, J. Phys. Chem. B, 108(46), 17886 (2004)
  12. Salvador-Pascual JJ, Citalan-Cigarroa S, Solorza-Feria O, J. Power Sources, 172(1), 229 (2007)
  13. Mittermeier T, Weiss A, Gasteiger HA, Hasche F, J. Electrochem. Soc., 164(12), F1081 (2017)
  14. Pires FI, Villullas HM, Int. J. Hydrog. Energy, 37(22), 17052 (2012)
  15. Park JH, Sohn Y, Jung DH, Kim P, Joo JB, J. Ind. Eng. Chem., 36, 109 (2016)
  16. Koenigsmann C, Santulli AC, Gong KP, Vukmirovic MB, Zhou WP, Sutter E, Wong SS, Adzic RR, J. Am. Chem. Soc., 133(25), 9783 (2011)
  17. Zhao X, Chen S, Fang Z, Ding J, Sang W, Wang Y, Zhao J, Peng Z, Zeng J, J. Am. Ceram. Soc., 137, 2804 (2015)
  18. Xiao L, Zhuang L, Liu Y, Lu JT, Abruna HD, J. Am. Chem. Soc., 131(2), 602 (2009)
  19. Rego R, Oliveira C, Velazquez A, Cabot PL, Electrochem. Commun., 12, 745 (2010)
  20. Yang Z, Ling Y, Zhang Y, Xu G, Sci. Rep., 6, 36521 (2016)
  21. Wang M, Qin X, Jiang K, Dong Y, Shao M, Cai WB, J. Phys. Chem. C, 12, 3416 (2017)
  22. Yan Y, Zhan F, Du J, Jiang Y, Jin C, Fu M, Zhang H, Yang D, Nanoscale, 7, 301 (2015)
  23. Meku E, Du CY, Sun YR, Du L, Wang YJ, Yin GP, J. Electrochem. Soc., 163(3), F132 (2016)
  24. Wang D, Xin HL, Wang H, Yu Y, Rus E, Muller DA, DiSalvo FJ, Abruna HD, Chem. Mater., 24, 2274 (2012)
  25. Liu J, Choi HJ, Meng LY, J. Ind. Eng. Chem., 64, 1 (2018)
  26. Guo DH, Shibuya R, Akiba C, Saji S, Kondo T, Nakamura J, Science, 351(6271), 361 (2016)
  27. Lee S, Lee YW, Kwak DH, Lee JY, Han SB, Sohn JI, Park KW, J. Ind. Eng. Chem., 43, 170 (2016)
  28. Perini L, Durante C, Favaro M, Perazzolo V, Agnoli S, Schneider O, Granozzi G, Gennaro A, ACS Appl. Mater. Interfaces, 7, 1170 (2015)
  29. Lee H, Sung YE, Choi I, Lim T, Kwon OJ, J. Power Sources, 362, 228 (2017)
  30. Drelinkiewicz A, Hasik M, Kloc M, Synth. Met., 102, 1307 (1999)
  31. Antolini E, Appl. Catal. B: Environ., 88(1-2), 1 (2009)
  32. Mallick K, Witcomb MJ, Scurrell MS, Eur. Phys. J. E, 19, 149 (2006)
  33. Naqash W, Majid K, Mater. Res., 18, 1121 (2015)
  34. Vecchio CL, Alegre C, Sebastian D, Stassi A, Arico AS, Baglio V, Materials, 8, 7997 (2015)
  35. Liu S, Xiao W, Wang J, Zhu J, Wu Z, Xin H, Wang D, Nano Energy, 27, 475 (2016)
  36. Xiao W, Cordeiro MAL, Gao G, Zheng A, Wang J, Lei W, Gong M, Lin R, Stavitski E, Xin HL, Wang D, Nano Energy, 50, 70 (2018)