Korean Journal of Chemical Engineering, Vol.36, No.10, 1708-1715, October, 2019
Synthesis of bi-functionalized ionic liquid - mesoporous alumina composite material and its CO2 capture capacity
E-mail:
Bi-functionalized ionic liquid (IL) - mesoporous alumina (MA) composite material was synthesized and used for CO2 capture. Ordered mesoporous alumina was synthesized by self-assembly method with aluminum isopropoxide as aluminum source. Then bi-functionalized ionic liquid 1-methoxyethyl-3-methyl imidazole glycinate ([MOEmim][Gly]) was immobilized on mesoporous alumina by ultrasonic-assisted impregnation method. Ordered mesostructure of alumina keeps well in the composite material. Compared with bi-functionalized ionic liquid, thermal stability of the composite material greatly improved. Finally, CO2 capture capacity of IL-MA composite material was studied under different temperatures. On the basis of both capture capacity and capture rate, 40 °C is the optimal temperature. The capture capacity is 1.42mol·mol IL-1 - equivalent to 144mg·g sorbent-1, which is higher than IL or MA alone. Furthermore, the capture capacity of composite material almost maintains constant after eight capture-regeneration cycles.
- Fashandi H, Zarrebini M, Ghodsi A, Saghafi R, J. Colloid Interface Sci., 476, 35 (2016)
- Dai ZD, Noble RD, Gin DL, Zhang XP, Deng LY, J. Membr. Sci., 497, 1 (2016)
- Sistla YS, Khanna A, Chem. Eng. J., 273, 268 (2015)
- Fan W, Liu Y, Wang K, J. Clean Prod., 125, 296 (2016)
- Chen Z, Deng S, Wei H, Wang B, Huang J, Yu G, ACS Appl. Mater. Inter., 5, 6937 (2013)
- Zhang Y, Sunarso J, Liu S, Wang R, Int. J. Greenh. Gas Con., 12, 84 (2013)
- Cho HK, Kim JE, Lim JS, Korean J. Chem. Eng., 34(5), 1475 (2017)
- Uehara Y, Karami D, Mahinpey N, Ind. Eng. Chem. Res., 56(48), 14316 (2017)
- Wang C, Luo H, Li H, Zhu X, Yu B, Dai S, Chem. Eur. J., 18, 2153 (2012)
- Zhou LY, Shang XM, Fan J, Wang JJ, J. Chem. Thermodyn., 103, 292 (2016)
- Zhang Y, Zhang S, Lu X, Zhou Q, Fan W, Zhang X, Chem Eur. J., 15, 3003 (2009)
- Wan MM, Zhu HY, Li YY, Ma J, Liu S, Zhu JH, ACS Appl. Mater. Inter., 6, 12947 (2014)
- Kumar K, Kumar A, J. Phys. Chem. C, 122, 8216 (2018)
- Zhu JM, Xin F, Huang JH, Dong XC, Liu HM, Chem. Eng. J., 246, 79 (2014)
- Nkinahamira F, Su TZ, Xie YQ, Ma GF, Wang HT, Li J, Chem. Eng. J., 326, 831 (2017)
- Erto A, Silvestre-Albero A, Silvestre-Albero J, Rodriguez-Reinoso F, Balsamo M, Lancia A, Montagnaro F, J. Colloid Interface Sci., 448, 41 (2015)
- Xu LL, Zhao H, Song HL, Chou LJ, Int. J. Hydrog. Energy, 37(9), 7497 (2012)
- Tian M, Long Y, Xu D, Wei SY, Dong ZP, J. Colloid Interface Sci., 521, 132 (2018)
- Plaza MG, Pevida C, Arias B, Fermoso J, Arenillas A, Rubiera F, Pis JJ, J. Them. Ana. Calorim., 92, 601 (2008)
- Lara Y, Romeo LM, Energy Procedia, 114, 2380 (2017)
- Ekka B, Dhaka RS, Patel RK, Dash P, J. Clean Prod., 151, 303 (2017)
- Gunathilake C, Gangoda M, Jaroniec M, Ind. Eng. Chem. Res., 55(19), 5598 (2016)
- Jeon H, Ahn SH, Kim JH, Min YJ, Lee KB, J. Mater. Sci., 46(11), 4020 (2011)
- Fuentes CES, Guzman-Lucero D, Torres-Rodriguez M, Likhanova NV, Bolanos JN, Olivares-Xometl O, Lijanova IV, Sep. Purif. Technol., 182, 59 (2017)
- Balsamo M, Erto A, Lancia A, Totarella G, Montagnaro F, Turco R, Fuel, 218, 155 (2018)
- Sun L, Luo J, Tang S, Chem. J. Chinese U., 38, 1578 (2017)
- Qian W, Xu Y, Xie B, Ge Y, Shu H, Int. J. Greenh. Gas. Con., 56, 194 (2017)
- Yuan Q, Yin AX, Luo C, Sun LD, Zhang YW, Duan WT, Liu HC, Yan CH, J. Am. Chem. Soc., 130(11), 3465 (2008)
- Tang S, Cui X, Gu L, Zhou H, Zhang X, Funct. Mater. Lett., 6, e13500 (2013)
- Bates ED, Mayton RD, Ntai I, Davis JH, J. Am. Chem. Soc., 124(6), 926 (2002)
- Ahmed A, Chaker Y, Belarbi EH, Abbas O, Chotard JN, Abassi HB, Nhien NV, Hadri ME, Bresson S, J. Mol. Struct., 1173, 653 (2018)
- Yu WH, Zhang H, Lei ZP, Shui HF, Kang SG, Wang ZC, Ren SB, Pan CX, Fuel, 236, 861 (2019)
- Zhang GJ, Zhao PY, Xu Y, Yang ZX, Cheng HZ, Zhang YF, ACS Appl. Mater. Inter., 10, 34340 (2018)