화학공학소재연구정보센터
Clean Technology, Vol.25, No.3, 206-222, September, 2019
계면활성제에 의한 NAPL 오염의 정화효율 수치 모의를 위한 모델 개발
Development of Numerical Model for Simulating Remediation Efficiency Using Surfactant in a NAPL Contaminated Area
E-mail:
초록
최근에는 다양한 다상오염물 거동 흐름 모델들이 개발되었고 일부는 상용화되기도 하였으나, 대부분이 압력기저접근방식을 갖고 개발된 프로그램들이므로 다양한 수치적 어려움을 내재하고 있다. 이러한 수치적 어려움을 극복하기 위해서는 분율흐름접근방식을 따르는 기존 다상흐름거동 수치모델로 개발된 MultiPhaSe flow (MPS) 모델에 계면활성제에 의한 용해 현상을 모사할 수 있는 오염물 거동 모듈을 결합해서 MultiPhaSe flow and TranSport (MPSTS) 프로그램을 본 연구에서 개발하였다. 개발된 모델은 Clement의 해석 해를 사용하여 검증하였다. 여기서 MPSTS프로그램은 입자추적법과 결합한 라그랑지안-율러리안 기법을 이용해서 상간물질전달 효과와 다상내 오염물 거동 기능을 결합한 계면활성제 활용 복원과정을 모사할 수 있는 프로그램이다. 본 연구에서는 개발된 모델을 이용해서 소수성 액체(non aqueous phase liquid, NAPL)로 오염된 지역의 계면활성제에 의한 오염 정화 시 층상구조를 가지는 수리지질학적 불 균질성이 복원효율에 미치는 영향을 수치 모의 하였다. 수치모의 결과, 하부 층의 수리전도도가 상부 층의 수리전도도보다 10배, 20배, 50배로 큰 경우에 대해서 하부에서 물속에 용해된 디젤의 농도가 높게 나타난다. 왜냐하면 계면활성제가 하부 층을 따라서 좀 더 빨리 움직여서 하부 층에서 잔류 소수성 액체를 좀 더 많이 용해시켰기 때문이다.
Recently, various multiphase flows have been developed, and among them some models have been commercialized. However, most of them have been developed based on a pressure-based approach; therefore, various numerical difficulties were involved inherently. Accordingly, in order to overcome these numerical difficulties, a multiphase flow model, MultiPhaSe flow (MPS), following a fractional-flow based approach was developed. In this study, by combining a contaminant transport module describing an enhanced dissolution effect of a surfactant with MPS, a MultiPhaSe flow and TranSport (MPSTS) model was developed. The developed model was verified using the analytical solution of Clement. The MPSTS model can simulate the process of surfactant enhanced aquifer remediation including interphase mass transfer and contaminant transport in multiphase flow by using the coupled particle tracking method and Lagrangian-Eulerian method. In this study, a surfactant was used in a non aqueous phase liquid (NAPL) contaminated area, and the effect of hydro-geological heterogeneity in the layered media on remediation efficiency was studied using the developed model. According to the numerical simulation, when hydraulic conductivity in a lower layer is 10 times, 20 times, and 50 times larger than that in an upper layer, the concentration of dissolved diesel in the lower layer is much higher than that in the upper layer because the surfactant moves faster along the lower layer owing to preferential flow; thus, the surfactant enhances dissolution of residual non aqueous phase liquid in the lower layer.
  1. Suk H, Yeh GT, J. Hydrol. Eng., 12(1), 14 (2007)
  2. Suk H, Yeh GT, Comput. Geosci., 12(4), 541 (2008)
  3. Suk H, Yeo I, Lee K, Econ. Environ. Geol., 44(2), 161 (2011)
  4. Bastian P, Helmig R, Adv. Water Resour., 23(3), 199 (1999)
  5. Bradford SA, Abriola LM, Rathfelder KM, Adv. Water Resour., 22(2), 117 (1998)
  6. Celia MA, Binning P, Water Resour. Res., 28(10), 2819 (1992)
  7. Dekker TJ, Abriola LM, J. Contam. Hydrol., 42(2), 187 (2000)
  8. Kaluarachchi JJ, Parker JC, Water Resour. Res., 25(1), 43 (1989)
  9. Kueper BH, Frind EO, Water Resour. Res., 27(6), 1049 (1991)
  10. Pinder GF, Abriola LM, Water Resour. Res., 22(9S), 109S (1986)
  11. Sleep BE, Sykes JF, Water Resour. Res., 25(1), 81 (1989)
  12. White MD, Oostrom M, Richland, Wash. (1995).
  13. Class H, Helmig R, Bastian P, Adv. Water Resour., 25(5), 533 (2002)
  14. Guarnaccia JF, Pinder GF, The Univ. of Vermont, Burlington, Vt. (1997).
  15. Wendland E, Flensberg D, The Netherlands, p. 297-304 (2002).
  16. Spivak A, Price HS, Settari A, Soc. Petrol. Eng. J., 17(1), 27 (1977)
  17. Gallo C, Manzini G, Commun. Numer. Methods. Eng., 17(5), 325 (2001)
  18. Binning P, Celia MA, Adv. Water Resour., 22(5), 461 (1999)
  19. Chen Z, Qin G, Ewing RE, SIAM J. Appl. Math., 60(3), 747 (2000)
  20. Hoteit H, Firoozabadi A, Adv. Water Resour., 31(1), 56 (2008)
  21. Hoteit H, Firoozabadi A, Adv. Water Resour., 31(6), 891 (2008)
  22. Pope GA, Sepehrnoori K, Sharma MM, McKinney DC, Speitel GE, Jackson RE, Three-Dimensional NAPL fate and transport model. EPA/600R-99/011 (February 1999).
  23. Jackson RE, Dwarakanath V, Ewing JE, Avis J, Can. Geotech. J., 43(7), 694 (2006)
  24. Lee KS, Kim YH, Kim CU, Lee JM, Koo KK, Clean Technol., 60(1), 51 (2000)
  25. Rathfelder KM, Abriola LM, Taylor TP, Pennell KD, J. Contam. Hydrol., 48(3-4), 351 (2001)
  26. Finkel M, Liedl R, Teutsch G, Environ. Model. Softw., 14(2-3), 203 (1999)
  27. Lee M, Water Air Soil Pollut., 121(1-4), 289 (2000)
  28. Brown CL, Pope GA, Abriola LM, Sepehrnoori K, Water Resour. Res., 30(11), 2959 (1994)
  29. Mason AR, Kueper BH, Environ. Sci. Technol., 30(11), 3205 (1996)
  30. Lee KS, J. Korean Soc. Environ. Eng, 32(7), 690 (2010)
  31. Suk H, Ground Water, 54(4), 508 (2016)
  32. Parker JC, Lenhard RJ, Kuppusamy T, Water Resour. Res., 23(4), 618 (1987)
  33. Pennell KD, Jin M, Abriola LM, Pope GA, J. Contam. Hydrol., 16(1), 35 (1994)
  34. Clement TP, Water Resour. Res., 37(1), 157 (2001)
  35. Zhong L, Mayer AS, Pope GA, J. Contam. Hydrol., 60(1-2), 55 (2003)
  36. Domenico PA, Schwartz FW, Physical and chemical hydrogeology, 2nd, John wiley & Sons, inc. 1990.