화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.30, No.5, 639-642, October, 2019
양이온성 계면활성제를 이용한 수산화인회석 합성
Synthesis of Hydroxyapatite Using a Cationic Surfactant
E-mail:
초록
본 연구에서는 침전법을 이용하여 양이온성 계면활성제인 hexadecyltrimethylammonium chloride (CTAC)를 도입한 수산화인회석을 합성하였다. X-선 회절 분석법과 투과전자현미경, 비표면적 분석기를 이용하여 수산화인회석과 CTAC을 도입한 수산화인회석의 결정성, 형태, 비표면적을 분석하였다. 열처리 후, HAP와 CTAC-HAP는 열처리 전과 비교하여 비표면적이 감소하였다. 또한 열처리는 뾰족한 막대 모양에서 종횡비가 감소한 둥근 모양으로의 CTAC-HAP의 형태 변화를 유도하였다. 이러한 형태의 변화는 순수한 HAP에서도 관찰되었다. 그러므로 형태 변화와 열처리 후의 비표면적 감소는 열처리 중 CTAC의 제거로 생성된 기공들이 형태 변화로 인해 유지되지 않는 것으로 판단된다.
Hydroxyapatite (HAP) containing hexadecyltrimethylammonium chloride (CTAC) as a cationic surfactant was prepared by a precipitation method. X-ray diffraction (XRD), transmission electron microscopy (TEM) and micropore physisorption analyzer were used for characterizing the crystal phase, morphology and specific surface area of HAP and CTAC-HAP. After thermal treatment, the specific surface area of both pure HAP and CTAC-HAP were reduced. The sharp rod morphology of CTAC-HAP was changed into a round shape with a smaller aspect ratio after the heat treatment. The morphological change by thermal treatment was also observed in pure HAP. Therefore, the morphological change and decrease of the specific surface area suggested that pores from the removal of CTAC during thermal treatment were not retained.
  1. Binks BP, Desforges A, Duff DG, Langmuir, 23(3), 1098 (2007)
  2. Peng XG, Manna L, Yang WD, Wickham J, Scher E, Kadavanich A, Alivisatos AP, Nature, 404(6773), 59 (2000)
  3. Jana NR, Gearheart L, Murphy CJ, Adv. Mater., 13(18), 1389 (2001)
  4. Kay MI, Young RA, Posner AS, Nature, 204, 1050 (1964)
  5. Suchanek W, Yoshimura M, J. Mater. Res., 13, 94 (1998)
  6. Wei G, Ma PX, Biomaterials, 25, 4749 (2004)
  7. Deville S, Saiz E, Tomsia AP, Biomaterials, 27, 5480 (2006)
  8. Bonfield W, Grynpas MD, Tully AE, Bowman J, Abram J, Biomaterials, 2, 185 (1981)
  9. Bernardi G, Nature, 206, 779 (1965)
  10. Misra DN, J. Dent. Res., 75, 1418 (1996)
  11. Mori K, Hara T, Mizugaki T, Ebitani K, Kaneda K, J. Am. Chem. Soc., 126(34), 10657 (2004)
  12. Mori K, Yamaguchi K, Hara T, Mizugaki T, Ebitani K, Kaneda K, J. Am. Ceram. Soc., 124, 11572 (2002)
  13. Dominguez MI, Romero-Sarria F, Centeno MA, Odriozola JA, Appl. Catal. B: Environ., 87(3-4), 245 (2009)
  14. Jaworski JW, Cho S, Kim Y, Jung JH, Jeon HS, Min BK, Kwon KY, J. Colloid Interface Sci., 394, 401 (2013)
  15. Kim S, Jung JH, Kim DH, Woo DK, Park JB, Choi MY, Kwon KY, Bull. Korean Chem. Soc., 34, 221 (2013)
  16. Lin KL, Pan JY, Chen YW, Cheng RM, Xu XC, J. Hazard. Mater., 161(1), 231 (2009)
  17. Weng W, Baptista JL, J. Mater. Sci. Mater. Med., 9, 159 (1998)
  18. Rusu VM, Ng CH, Wilke M, Tiersch B, Fratzl P, Peter MG, Biomaterials, 26, 5414 (2005)
  19. Schroder E, Jonsson T, Poole L, Anal. Biochem., 313, 176 (2003)
  20. Son SJ, Bai X, Lee SB, Drug Discov. Today, 12, 650 (2007)
  21. Komlev VS, Barinov SM, Koplik EV, Biomaterials, 23, 3449 (2002)
  22. Li YB, Tjandra W, Tam KC, Mater. Res. Bull., 43(8-9), 2318 (2008)
  23. Mohammad NF, Othman R, Yee-Yeoh F, Rev. Adv. Mater. Sci., 38, 138 (2014)