Macromolecular Research, Vol.27, No.10, 1038-1044, October, 2019
Preparation and Evaluation of Cross-Linked Chitosan/Silver Sulfide Luminescence Nanocomposites by Using Green Capping Agent Against Some Pathogenic Microbial Strains
E-mail:
In this paper, different silver sulfide (Ag2S) nanoparticles were cross-linked with chitosan, as a biodegradable and bioactive polymer. Chitosan/Ag2S nano-composites were synthesized for the first time, using multistage distillation, with the micellization-assisted ultrasonic method. The designed nanocomposites system was evaluated, for in vitro efficient antibacterial activity. Various factors, including concentration of surfactants, pulse time, power irradiation, and interaction between these factors, will directly affect different properties of the cross-linked chitosan/Ag2S nanocomposites. Results showed that cross-linked nanopolymer networks are capable of considerably inhibiting growth of antibiotic-resistant Escherichia coli, pseudomonas aeruginosa, and Serratia marcescens as gram-negative bacteria, and Bacillus subtilis and Micrococcus luteus as gram-positive bacteria, between 64 up and 32 μg/mL. Antibacterial activity was conducted against 7 Gram-negative and Gram-positive bacteria using agar well diffusion assay and minimum inhibitory concentration (MIC), was determined. Samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transition electron microscopy (TEM), atomic force microscopy (AFM), Fourier transformed infrared spectrum (FT-IR), thermo-gravimetric analysis (TGA), and dynamic light scattering (DLS).
- Shankar S, Pangeni R, Park JW, Rhim JW, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 95, 508 (2018)
- Shi J, Votruba AR, Farokhzad OC, Langer R, Nano Lett., 10, 3223 (2010)
- Dutz S, Kettering M, Hilger I, Muller R, Nanotechnology, 22, 265102 (2011)
- Piktel E, Niemirowicz K, J. Nanobiotechnol., 14, 39 (2016)
- Nalwa HS, J. Biomed. Nanotechnol., 10, 2421 (2014)
- Soltani H, Pardakhty A, Ahmadzadeh S, J. Mol. Liq., 219, 63 (2016)
- Fouladgar M, Ahmadzadeh S, Appl. Surf. Sci., 379, 150 (2016)
- Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Water Res., 42, 4591 (2008)
- Velayati AA, Masjedi MR, Farnia P, Tabarsi P, Chest, 136, 420 (2009)
- Lakshmi SD, Avti PK, Hegde G, Nano-Structures Nano-Objects, 16, 306 (2018)
- Sharma R, Francois D, Hammerschlag MR, Pediatric Clinics of North America, 64, 1369 (2017).
- Wu G, Zhou M, Ke Y, Mater. Lett., 223, 239 (2018)
- Palza H, Int. J. Mol. Sci., 16(1), 2099 (2015)
- Dar MA, Ingle A, Rai M, Nanomedicine, 9, 105 (2013)
- Sanvicens N, Pastells C, Pascual N, Trends Anal. Chem., 28, 1243 (2009)
- Fang Y, Guo S, Li D, Zhu C, Ren W, Dong S, Wang E, ACS Nano, 6, 400 (2011)
- Meera KMS, Sankar RM, Jaisankar SN, Mandal AB, J. Phys. Chem. B, 117(9), 2682 (2013)
- Nadagouda MN, Varma RS, Macromol. Rapid Commun., 28(4), 465 (2007)
- Shao L, Chang X, Zhang Y, Huang Y, Yao Y, Appl. Surf. Sci., 280, 989 (2013)
- Goy RC, de Britto D, Assis OBG, Polimeros, 19, 241 (2009)
- Li J, Wu Y, Zhao L, Carbohydr. Polym., 148, 200 (2016)
- Do C, Chang X, Zhang Y, Huang Y, Yao Y, J. Polym. Sci. A: Polym. Chem., 25, 2301 (1987)
- Do C, Chang X, Zhang Y, Huang Y, Yao Y, J. Polym. Sci. A: Polym. Chem., 25, 2409 (1987)
- Becker WG, Bard AJ, J. Phys. Chem., 87, 4888 (1983)
- Denzler D, Olschewski M, Sattler K, J. Appl. Phys., 84, 2841 (1998)
- Prakash FA, Dushendra GJ, Int. J. Nanotechnol. Appl., 5, 99 (2011)
- Besinis A, De Peralta T, Handy RD, Nanotoxicology, 8, 1 (2014)
- Abdelgawad AM, Hudson SM, Rojas OJ, Carbohydr. Polym., 100, 166 (2014)
- Alonso A, Vigues N, Munoz-Berbel X, Chem. Commun., 47, 10464 (2011)
- Shah V, Shah S, Shah H, Rispoli FJ, McDonnell KT, PLoS One, 7, e47827 (2012)