화학공학소재연구정보센터
Macromolecular Research, Vol.27, No.10, 1045-1049, October, 2019
Fowler Nordheim Plot Analysis of Degradation in P3HT:PCBM Thin Film MIM Devices
E-mail:
Metal-Insulator-Metal type devices based on poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) have been examined to understand the effect of degradation on the charge injection and transport phenomena. The Fowler Nordheim (FN) plots with time have been investigated to analyze the behavior of charge tunneling through the potential barrier at the interfaces. A clear transition from thermionic emission to tunneling is observed, and the transition voltage at which this occurs reduces with time. Furthermore, there is appearance of multiple inflexion points with time in the FN plots, and this is explained on the basis of recombination and majority charge carriers within the device. To validate the observations, comparative studies have been carried out on multi-walled carbon nanotube doped samples, which indicate similar behavior for fresh and degraded samples. It is, thus, ascertained that defect states, recombination of charge carriers and the mobility plays a significant role in governing the device behavior.
  1. Lukose B, Bobbili SV, Clancy P, Mol. Simul., 43, 743 (2017)
  2. Sharma V, Singh V, Arora M, Arora S, Tandon RP, J. Mater. Sci. -Mater. Electron., 26, 6212 (2015)
  3. Holliday S, Ashraf RS, Wadsworth A, Baran D, Yousaf SA, Nielsen CB, et al., Nat. Commun., 7, 11585 (2016)
  4. Nia NY, Matteocci F, Cina L, Di Carlo A, ChemSusChem, 10, 3854 (2017)
  5. Mamun AA, Ava TT, Zhang K, Baumgart H, Namkoong G, Phys. Chem. Chem. Phys., 19, 17960 (2017)
  6. Chiguvare Z, J. Appl. Phys., 112, 104508 (2012)
  7. Chiguvare Z, Parisi J, Z. Naturforsch., 67a, 589 (2012)
  8. Neghabi M, Behjat A, Curr. Appl. Phys., 12(2), 597 (2012)
  9. Wang G, Na SI, Kim TW, Kim Y, Park S, Lee T, Org. Electron, 13, 771 (2012)
  10. Chiguvare Z, Parisi J, Dyakonov V, J. Appl. Phys., 94, 2440 (2003)
  11. Varade V, Jagtap AM, Anjaneyulu P, Rao KSRK, Ramesh KP, Menon R, J. Appl. Phys., 117, 215503 (2015)
  12. Xu NS, Chen J, Deng SZ, Appl. Phys. Lett., 76, 2463 (2000)
  13. Khlifi Y, Kassmi K, Roubi L, Maimouni R, Phys. Status Solidi A-Appl. Res., 182, 737 (2000)
  14. Singh V, Curr. Appl. Phys., 17(11), 1450 (2017)
  15. Kawano K, Pacios R, Poplavskyy D, Nelson J, Bradley DDC, Durrant JR, Sol. Energy Mater. Sol. Cells, 90(20), 3520 (2006)
  16. Singh V, Arora S, Kumar P, Bhatnagar PK, Arora M, Tandon RP, Phys. Scripta, 84, 065803 (2011)
  17. Cao HQ, He WD, Mao YW, Lin X, Ishikawa K, Dickerson JH, Hess WP, J. Power Sources, 264, 168 (2014)
  18. Arora S, Singh V, Arora M, Tandon RP, Physica B, 407, 3044 (2012)
  19. Chiguvare Z, Parisi J, Dyakonov V, Z. Naturforsch., 62a, 609 (2007)
  20. Kumar V, Jain SC, Kapoor AK, Geens W, Aernauts T, Poortmans J, Mertens R, J. Appl. Phys., 92, 7325 (2002)
  21. Wu MC, Lin YY, Chen S, Liao HC, Wu YJ, Chen CW, Chen YF, Su WF, Chem. Phys. Lett., 468(1-3), 64 (2009)
  22. Arranz-Andres J, Blau WJ, Carbon, 46, 2067 (2008)
  23. Singh V, Arora S, Arora M, Sharma V, Tandon RP, Phys. Lett. A, 378, 3046 (2014)
  24. Veera S, Nismy NA, Adikaari AADT, Simon JH, Maxim S, Silva SRP, Nanotechnology, 22, 265607 (2011)