- Previous Article
- Next Article
- Table of Contents
Korean Journal of Materials Research, Vol.29, No.10, 579-585, October, 2019
Effects of Growth Rate and III/V Ratio on Properties of AlN Films Grown on c-Plane Sapphire Substrates by Plasma-Assisted Molecular Beam Epitaxy
E-mail:
In this study, we investigate the effect of Al/N source ratios and growth rates on the growth and structural properties of AlN films on c-plane sapphires by plasma-assisted molecular beam epitaxy. Both growth rates and Al/N ratios affect crystal qualities of AlN films. The full width at half maximum (FWHM) values of (1015) X-ray rocking curves (XRCs) change from 0.22 to 0.31° with changing of the Al/N ratios, but the curves of (0002) XRCs change from 0.04 to 0.45° with changing of the Al/N ratios. This means that structural deformation due to dislocations is slightly affected by the Al/N ratio in the (1015) XRCs but affected strongly for the (0002) XRCs. From the viewpoint of growth rate, the AlN films with high growth rate (HGR) show better crystal quality than the low growth rate (LGR) films overall, as shown by the FWHM values of the (0002) and (1015) XRCs. Based on cross-sectional transmission electron microscope observation, the HGR sample with an Al/N ratio of 3.1 shows more edge dislocations than there are screw and mixed dislocations in the LGR sample with Al/N ratio of 3.5.
- Nakamura S, Senoh M, Mukai T, Jpn. J. Appl. Phys., 32, L8 (1993)
- Wu J, Walukiewicz W, Yu KM, Ager JW, Haller EE, Lu H, Schaff WJ, Saito Y, Nanishi Y, Appl. Phys. Lett., 80, 3967 (2002)
- ISO 21348 Definitions of Solar Irradiance Spectral Categories. Space Environment Technologies Home Page. Retrieved June 6, 2019 from http://www.spacewx.com/pdf/SET_21348_2004.pdf.
- Shin JY, Kim SJ, Kim DK, Kang DH, Appl. Environ. Microbiol., 82, 2 (2016)
- Nagasawa Y, Hirano A, Appl. Sci., 8, 1264 (2018)
- Kneissl M, Mehnke F, Kuhn C, Reich C, et al., 2015 IEEE Summer Top. Meet. Ser., p.9 (2015).
- Perry PB, Rutz RF, Appl. Phys. Lett., 33, 319 (1978)
- Onuma T, Chichibu SF, Sota T, Asai K, Sumiya S, Shibata T, Tanaka M, Appl. Phys. Lett., 81, 652 (2002)
- Yim WM, Stofko EJ, Zanzucchi PJ, Pankove JI, Ettenberg M, Gilbert SL, J. Appl. Phys., 44, 292 (1973)
- Chen L, Skromme BJ, Dalmau RF, Schlesser R, Sitar Z, Chen C, Sun W, Yang J, Khan MA, Nakarmi ML, Lin JY, Jiang HX, Appl. Phys. Lett., 85, 4334 (2004)
- Khan A, Balakrishnan K, Katona T, Nat. Photonics., 2, 77 (2008)
- Adivarahan V, Heidari A, Zhang B, Fareed Q, Islam M, Hwang S, Balakrishnan K, Khan A, Appl. Phys. Express, 2, 092102 (2009)
- Hirayama H, Tsukada Y, Maeda T, Kamata N, Appl. Phys. Express., 3, 031002 (2010)
- Yonkee BP, Young EC, DenBaars SP, Nakamura S, Speck JS, Appl. Phys. Lett., 109, 191104 (2016)
- Liao Y, Thomidis C, Kao C, Moustakas TD, Appl. Phys. Lett., 98, 081110 (2011)
- Hirayama H, Fujikawa S, Noguchi N, Norimatsu J, Takano T, Tsubaki K, Kamata N, Phys. Status Solidi A-Appl. Res., 206, 1176 (2009)
- Kneissl M, Kolbe T, Chua C, Kueller V, Lobo N, Stellmach J, Knauer A, Rodriguez H, Einfeldt S, Yang Z, Johnson NM, Weyers M, Semicond. Sci. Technol., 26, 014036 (2010)
- Altahtamouni TM, Lin JY, Jiang HX, AIP Adv., 4, 047122 (2014)
- Khan MA, Maeda N, Jo M, Akamatsu Y, Tanabe R, Yamada Y, Hirayama H, J. Mater. Chem. C., 7, 143 (2019)
- Guo QX, Yahata K, Tanaka T, Nishio M, Ogawa H, J. Cryst. Growth, 257(1-2), 123 (2003)
- Bai J, Wang T, Parbrook PJ, Lee KB, Cullis AG, J. Cryst. Growth, 282(3-4), 290 (2005)
- Lu L, Shen B, Xu FJ, Xu J, Gao B, Yang ZJ, Zhang GY, Zhang XP, Xu J, Yu DP, J. Appl. Phys., 102, 033510 (2007)