화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.29, No.10, 647-655, October, 2019
고온 비대칭압연이 알루미늄 합금의 미세조직과 성형성에 미치는 영향
Effects of Hot Asymmetric Rolling on Microstructure and Formability of Aluminum Alloys
E-mail:
In order to analyze the effect of hot asymmetric rolling on the microstructure and texture of aluminum alloy and to investigate the effect of the texture on the formability and plastic anisotropy of aluminum alloy, aluminum 6061 alloy is asymmetrically rolled at room temperature, 200 °C, 350 °C, and 500 °C, and the results are compared with symmetrically rolled results. In the case of asymmetric rolling, the equivalent strain (εeq) is greatest in the upper roll part where the rotational speed of the roll is high and increases with increasing rolling temperature. The increase rate of the mean misorientation angle with increasing temperature is larger than that during symmetrical rolling, and dynamic recrystallization occurs the most when asymmetrical rolling is performed at 500 °C. In the case of hot symmetric rolling, the {001}<110> rotated cube orientation mainly develops, but in the case of hot asymmetric rolling, the {111}<110> orientation develops along with the {001}<100> cube orientation. The hot asymmetric rolling improves the formability (r) of the aluminum 6061 alloy to 0.9 and reduces the plastic anisotropy (Δr) to near zero due to the {111}<110> shear orientation that develops by asymmetric rolling.
  1. Burger G, Gupta A, Jeffrey P, Lloyd D, Mater. Charact., 35, 23 (1995)
  2. Heinz A, Haszler A, Keidel C, Moldenhauer S, Benedictus R, Miller W, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 280, 102 (2000)
  3. Ito K, Kobayashi H, Adv. Eng. Mater., 8, 828 (2006)
  4. Alhamidi A, Dewi M, Int. J. Mech. Eng. Educ., 3, 10 (2018)
  5. Barnwal VK, Raghavan R, Tewari A, Narasimhan K, Mishra SK, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 479, 56 (2017)
  6. Kim IS, Nam SK, Lee DN, Appl. Mech. Mater., 873, 60 (2017)
  7. Lee SH, Saito Y, Sakai T, Utsunomiya H, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 325, 228 (2002)
  8. Ratchev P, Verlinden B, Smet PD, Houtte PV, Acta Mater., 46, 3523 (1998)
  9. Hirsch J, Mater. Sci. Forum, 242, 33 (1997)
  10. Takahashi H, Motohashi H, Tsuchida S, Int. J. Plast., 12, 935 (1996)
  11. Nam SK, Jeong HB, Kim I, Mater. Res. Innov., 15, 454 (2011)
  12. Hu J, Ikeda K, Murakami T, Mater. Trans., 36, 1363 (1995)
  13. Han JH, Oh KH, Lee JC, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 387, 240 (2004)
  14. Sidor J, Miroux A, Petrov R, Kestens L, Philos. Mag., 88, 3779 (2008)
  15. Tajally M, Emadoddin E, Mater. Des., 32, 1594 (2011)
  16. Inoue H, Takasugi T, Mater. Trans., 48, 2014 (2007)
  17. Engler O, Kim H, Huh MY, Mater. Sci. Technol., 17, 75 (2001)
  18. Choi CH, Kim KH, Lee DN, Mater. Sci. Forum, 273, 391 (1998)
  19. Hu J, Ikeda K, Murakami T, J. Mater. Process. Technol., 73, 49 (1998)
  20. Sidor J, Miroux A, Petrov R, Kestens L, Philos. Mag., 99, 30 (2008)
  21. Tamimi S, Correia JP, Lopes AB, Ahzi S, Barlat F, Gracio JJ, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 603, 150 (2014)
  22. Utsunomiya H, Ueno T, Sakai T, Scr. Mater., 57, 1109 (2007)
  23. Gourdet S, Montheillet F, Acta Mater., 51, 2685 (2003)
  24. Tsuji N, Nagai Y, Sakai T, Saito Y, Mater. Trans., 39, 252 (1998)
  25. Choi CH, Kwon JW, Oh KH, Lee DN, Acta Mater., 45, 5119 (1997)
  26. Taylor GI, Quinney H, Phil. Trans. Roy. Soc. Lond. Math. Phys. Sci., 230, 323 (1931)