- Previous Article
- Next Article
- Table of Contents
Korean Journal of Chemical Engineering, Vol.36, No.11, 1753-1766, November, 2019
A short review on electrochemically self-doped TiO2 nanotube arrays: Synthesis and applications
E-mail:,
Electrochemically self-doped TiO2 nanotube arrays (known as reduced TiO2 nanotube arrays, r-TiO2 NTAs) are currently drawing great attention as emerging and promising materials for energy and environmental applications as they exhibit highly enhanced electrochemical properties, such as good capacitive properties and electro- and photocatalytic activity when compared to pristine TiO2 NTAs. Such enhanced properties are attributed to the introduction of trivalent titanium (Ti(III)) as a self-dopant in the lattice of pristine TiO2 NTAs through simple electrochemical reduction. However, in spite of the great interest in, and potential of this material, there is no comprehensive review on the synthesis and applications of r-TiO2 NTAs. Therefore, in this review, we critically and briefly review r-TiO2 NTAs in terms of the electrochemical self-doping mechanism, their functional features, and various applications including photolysis, dyesensitized solar cells (DSSCs), biomedical coatings and drug delivery. In addition, to better understanding r-TiO2 NTAs, pristine TiO2 NTAs are briefly introduced. Furthermore, this review proposes future research directions with major challenges to be overcome for the successful development of r-TiO2 NTAs, such as to standardize matrices for performance evaluation, to confirm the organic degradation performance as anode, and to improve mechanical stability.
Keywords:TiO2 Nanotube Arrays (NTAs);Electrochemical Self-doping;Capacitive Property;Electrocatalytic Activity;Photocatalytic Activity
- Roy P, Berger S, Schmuki P, Angew. Chem.-Int. Edit., 50, 2904 (2011)
- Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA, Nano Lett., 6, 215 (2006)
- Hou Y, Li X, Zhao Q, Quan X, Chen G, Environ. Sci. Technol., 44, 5098 (2010)
- Jun Y, Park JH, Kang MG, Chem. Commun., 48, 6456 (2012)
- Mor GK, Varghese OK, Paulose M, Shankar K, Grimes CA, Sol. Energy Mater. Sol. Cells, 90(14), 2011 (2006)
- Grimes CA, J. Mater. Chem., 17, 1451 (2007)
- Mohamed AER, Rohani S, Energy Environ. Sci., 4, 1065 (2011)
- Mor G, Grimes C, TiO2 nanotube arrays-synthesis, properties and applications, Springer, New York (2009).
- Hoffmann MR, Martin ST, Choi WY, Bahnemann DW, Chem. Rev., 95(1), 69 (1995)
- Choi W, Termin A, Hoffmann MR, Angew. Chem.-Int. Edit., 33, 1091 (1994)
- Chen XB, Liu L, Yu PY, Mao SS, Science, 331(6018), 746 (2011)
- Macak JM, Gong BG, Hueppe M, Schmuki P, Adv. Mater., 12, 3027 (2007)
- Macak JM, Tsuchiya H, Ghicov A, Yasuda K, Hahn R, Bauer S, Schmuki P, Curr. Opin. Solid State Mater. Sci., 11, 3 (2007)
- Nah YC, Paramasivam I, Schmuki P, ChemphysChem, 11, 2698 (2010)
- Lu X, Wang G, Zhai T, Yu M, Gan J, Tong Y, Li Y, Nano Lett., 12, 1690 (2012)
- Zaleska A, Recent Pat. Eng., 2, 157 (2008)
- Park JH, Kim S, Bard AJ, Nano Lett., 6, 24 (2006)
- Fabregat-Santiago F, Barea EM, Bisquert J, Mor GK, Shankar K, Grimes CA, J. Am. Chem. Soc., 130(34), 11312 (2008)
- Zhang Z, Hedhili MN, Zhu H, Wang P, Phys. Chem. Chem. Phys., 15, 15637 (2013)
- Liao WJ, Yang JW, Zhou H, Murugananthan M, Zhang YR, Electrochim. Acta, 136, 310 (2014)
- Xu C, Song Y, Lu L, Cheng C, Liu D, Fang X, Chen X, Zhu X, Li D, Nanoscale Res. Lett., 8, 391 (2013)
- Zhong WJ, Sang SB, Liu YY, Wu QM, Liu KY, Liu HT, J. Power Sources, 294, 216 (2015)
- Zheng Q, Lee HJ, Lee J, Choi W, Park NB, Leo C, Chem. Eng. J., 249, 285 (2014)
- Raj CC, Prasanth R, J. Electrochem. Soc., 165(9), E345 (2018)
- Kim C, Kim S, Choi J, Lee J, Kang JS, Sung YE, Lee J, Choi W, Yoon J, Electrochim. Acta, 141, 113 (2014)
- Kim C, Kim S, Lee J, Kim J, Yoon J, ACS Appl. Mater. Interfaces, 7, 7486 (2015)
- Yang Y, Liao J, Li Y, Cao X, Li N, Wang C, Lin S, RSC Adv., 6, 46871 (2016)
- Jeong HW, Park KJ, Han DS, Park H, Appl. Catal. B: Environ., 226, 194 (2018)
- Kim C, Lee S, Kim S, Yoon J, Electrochim. Acta, 222, 1578 (2016)
- Zhang AQ, Gong FL, Xiao YH, Guo XP, Li F, Wang LZ, Zhang Y, Zhang LS, J. Electrochem. Soc., 164(2), H91 (2017)
- Kim C, Kim S, Hong SP, Lee J, Yoon J, Phys. Chem. Chem. Phys., 18, 14370 (2016)
- Li Z, Ding YT, Kang WJ, Li C, Lin D, Wang XY, Chen ZW, Wu MH, Pan DY, Electrochim. Acta, 161, 40 (2015)
- Peighambardoust NS, Asl SK, Mohammadpour R, Asl SK, Electrochim. Acta, 270, 245 (2018)
- Vellacheri R, Zhao H, Muhlstadt M, Ming J, Haddad AA, Wu M, Jandt KD, Lei Y, Adv. Mater. Technol., 1, 160001 (2016)
- Silva DD, Sanchez-Montes I, Hammer P, Aquino JM, Electrochim. Acta, 245, 165 (2017)
- Anwar T, Li W, Sagar RUR, Nosheen F, Singh R, Jafri HM, Shehzad K, Liang TX, J. Mater. Sci., 52(8), 4323 (2017)
- Radjenovic J, Sedlak DL, Environ. Sci. Technol., 49, 11292 (2015)
- Kim J, Lee C, Yoon J, Ind. Eng. Chem. Res., 57(33), 11465 (2018)
- Kim S, Kim C, Lee J, Kim S, Lee J, Kim J, Yoon J, ACS Sustainable Chem. Eng., 6, 1620 (2018)
- Liu N, Schneider C, Freitag D, Zolnhofer EM, Meyer K, Schmuki P, Chem. Eur. J., 22, 13810 (2016)
- Zhu H, Zhao MM, Zhou JK, Li WC, Wang HY, Xu Z, Lu L, Pei L, Shi Z, Yan SC, Li ZS, Zou ZG, Appl. Catal. B: Environ., 234, 100 (2018)
- Zhu L, Ma H, Han H, Fu Y, Ma C, Yu Z, Dong X, RSC Adv., 8, 18992 (2018)
- Zhou H, Zhang Y, J. Phys. Chem. C, 118, 5626 (2014)
- Zhou H, Zhang YR, J. Power Sources, 239, 128 (2013)
- Zwilling V, Darque-Ceretti E, Boutry-Forveille A, David D, Perrin MY, Aucouturier M, Surf. Interface Anal., 27, 629 (1999)
- Zwilling V, Aucouturier M, Darque-Ceretti E, Electrochim. Acta, 45(6), 921 (1999)
- Mor G, Varghese OK, Paulose M, Mukherjee N, Grimes CA, J. Mater. Res., 18, 2588 (2003)
- Cai Q, Paulose M, Varghese OK, Grimes CA, J. Mater. Res., 20, 230 (2005)
- Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA, Nano Lett., 5, 191 (2005)
- Macak JM, Sirotna K, Schmuki P, Electrochim. Acta, 50(18), 3679 (2005)
- Macak JM, Tsuchiya H, Schmuki P, Angew. Chem.-Int. Edit., 44, 2100 (2005)
- Taveira LV, Macak JM, Tsuchiya H, Dick LFP, Schmuki P, J. Electrochem. Soc., 152(10), B405 (2005)
- Albu SP, Ghicov A, Macak JM, Schmuki P, Phys. Status Solidi RRL, 1, R65 (2007)
- Yasuda K, Schmuki P, Electrochim. Acta, 52(12), 4053 (2007)
- Bauer S, Kleber S, Schmuki P, Electrochem. Commun., 8, 1321 (2006)
- Berger S, Kunze J, Schmuki P, LeClere D, Valota AT, Skeldon P, Thompson GE, Electrochim. Acta, 54(24), 5942 (2009)
- Li S, Zhang G, Guo D, Yu L, Zhang W, J. Phys. Chem. C, 113, 12759 (2009)
- Hu L, Huo K, Chen R, Gao B, Fu J, Chu PK, Anal. Chem., 83, 8138 (2011)
- Houser JE, Hebert KR, Nat. Mater., 8(5), 415 (2009)
- Nguyen QAS, Bhargava YV, Radmilovic VR, Devine TM, Electrochim. Acta, 54(18), 4340 (2009)
- Valota A, LeClere DJ, Skeldon P, Curioni M, Hashimoto T, Berger S, Kunze J, Schmuki P, Thompson GE, Electrochim. Acta, 54(18), 4321 (2009)
- Delplancke JL, Garnier A, Massiani Y, Winand R, Electrochim. Acta, 39(8-9), 1281 (1994)
- Zhang DR, Jin XZ, Li JH, Master. Chem. Phys., 176, 68 (2016)
- Arbiol J, Cerda J, Dezanneau G, Cirera A, Peiro F, Cornet A, Morante J, J. Appl. Phys., 92, 853 (2002)
- Reyes-Coronado D, Rodriguez-Gattorno G, Espinosa-Pesqueira M, Cab C, de Coss RD, Oskam G, Nanotechnology, 19, 145605 (2008)
- Mor GK, Varghese OK, Paulose M, Grimes CA, Adv. Funct. Mater., 15(8), 1291 (2005)
- Mahajan V, Misra M, Raja K, Mohapatra S, J. Phys. D-Appl. Phys., 41, 125307 (2008)
- Kunat M, Burghaus U, Surf. Sci., 544, 170 (2003)
- Funk S, Burghaus U, Catal. Lett., 118(1-2), 118 (2007)
- Deb SK, Cells S, Sol. Energy Mater., 92, 245 (2008)
- Hu FP, Ding FW, Song SQ, Shen PK, J. Power Sources, 163(1), 415 (2006)
- Nakata K, Fujishima A, J. Photochem. Photobiol., C, 13, 169 (2012)
- Lee SY, Park SJ, J. Ind. Eng. Chem., 19(6), 1761 (2013)
- Zhang Z, Zhang L, Hedhili MN, Zhang H, Wang P, Nano Lett., 13, 14 (2012)
- Wang G, Wang H, Ling Y, Tang Y, Yang X, Fitzmorris RC, Wang C, Zhang JZ, Li Y, Nano Lett., 11, 3026 (2011)
- Etacheri V, Di Valentin C, Schneider J, Bahnemann D, Pillai SC, J. Photochem. Photobiol. C, 25, 1 (2015)
- Gratzel M, Inorg. Chem., 44(20), 6841 (2005)
- Zhu K, Neale NR, Miedaner A, Frank AJ, Nano Lett., 7, 69 (2007)
- Roy P, Kim D, Lee K, Spiecker E, Schmuki P, Nanoscale Res. Lett., 2, 45 (2010)
- Kar A, Raja K, Misra M, Surf. Coat. Technol., 201, 3723 (2006)
- Shrestha NK, Macak JM, Schmidt-Stein F, Hahn R, Mierke CT, Fabry B, Schmuki P, Angew. Chem.-Int. Edit., 48, 969 (2009)
- Song YY, Roy P, Paramasivam I, Schmuki P, Angew. Chem.-Int. Edit., 49, 351 (2010)
- Lee J, Kim DH, Hong SH, Jho JYJS, Sens. Actuators B-Chem., 160, 1494 (2011)
- Kim ID, Rothschild A, Lee BH, Kim DY, Jo SM, Tuller HL, Nano Lett., 6, 2009 (2006)
- Berger S, Ghicov A, Nah YC, Schmuki P, Langmuir, 25(9), 4841 (2009)
- Yamase T, Chem. Rev., 98(1), 307 (1998)
- Zhou H, Zhang Y, J. Phys. Chem. C, 118, 5626 (2014)
- Zhu WD, Wang CW, Chen JB, Li Y, Wang J, Appl. Surf. Sci., 301, 525 (2014)
- Xue CR, Hu SL, Chang Q, Li N, Wang YZ, Liu W, Yang JL, J. Mater. Sci., 53(13), 9742 (2018)
- Sierra-Uribe H, Carrera-Crespo JE, Cano A, Cordoba-Tuta EM, Gonzalez I, Acevedo-Pena P, J. Solid State Electrochem., 22, 1881 (2018)
- Du K, Liu GH, Li MW, Wu CG, Chen XY, Wang KY, Electrochim. Acta, 210, 367 (2016)
- Xing MY, Fang WZ, Nasir M, Ma YF, Zhang JL, Anpo M, J. Catal., 297, 236 (2013)
- Song JN, Zheng MJ, Yuan XL, Li Q, Wang FZ, Ma LG, You YX, Liu SH, Liu PJ, Jiang DK, Ma L, Shen WZ, J. Mater. Sci., 52(12), 6976 (2017)
- Zhang LQ, Cao HZ, Pen QY, Wu LK, Hou GY, Tang YP, Zheng GQ, Electrochim. Acta, 283, 1507 (2018)
- Salari M, Konstantinov K, Liu HK, J. Mater. Chem., 21, 5128 (2011)
- Wu H, Li DD, Zhu XF, Yang CY, Liu DF, Chen XY, Song Y, Lu LF, Electrochim. Acta, 116, 129 (2014)
- Zhu G, Lin T, Lu X, Zhao W, Yang C, Wang Z, Yin H, Liu Z, Huang F, Lin J, J. Mater. Chem. A, 1, 9650 (2013)
- Liu J, Dai M, Wu J, Hu Y, Zhang Q, Cui J, Wang Y, Tan HH, Wu Y, Sci. Bulletin, 63, 194 (2018)
- Salari M, Aboutalebi SH, Konstantinov K, Liu HK, Phys. Chem. Chem. Phys., 13, 5038 (2011)
- Kim MS, Lee TW, Parka JH, J. Electrochem. Soc., 156(7), A584 (2009)
- Li Q, Xia Z, Wang S, Zhang Y, Zhang Y, J. Solid State Electrochem., 21, 2177 (2017)
- Samsudin NA, Zainal Z, Lim HN, Sulaiman Y, Chang SK, Lim YC, Amin M, Nadrah W, J. Nanomater., 2018, 1 (2018)
- Duan J, Hou H, Liu X, Yan C, Liu S, Meng R, Hao Z, Yao Y, Liao Q, J. Porous Mat., 23, 837 (2016)
- Zhang C, Xing J, Fan HW, Zhang WK, Liao MY, Song Y, J. Mater. Sci., 52(6), 3146 (2017)
- Zhou H, Zhang YR, J. Power Sources, 272, 866 (2014)
- Qin Y, Zhang J, Wang Y, Shu X, Yu C, Cui J, Zheng H, Zhang Y, Wu Y, RSC Adv., 6, 47669 (2016)
- Duan J, Hou H, Liu X, Liu S, Liao Q, Yao Y, Ceram. Int., 42, 16611 (2016)
- Duan J, Hou H, Liu X, Liao Q, Liu S, Yao Y, Ionics, 23, 3037 (2017)
- Pletcher D, Walsh FC, Industrial electrochemistry, Springer Science & Business Media (2012).
- Lipkowski J, Ross PN, The electrochemistry of novel materials, VCH Publishers (1994).
- Fujishima A, Einaga Y, Rao TN, Tryk DA, Diamond electrochemistry, Elsevier (2005).
- Kim JY, Kim CS, KiM SH, Yoon JY, J. Ind. Eng. Chem., 66, 478 (2018)
- Yang Y, Hoffmann MR, Environ. Sci. Technol., 50, 11888 (2016)
- Yang Y, Kao LC, Liu Y, Sun K, Yu H, Guo J, Liou SYH, Hoffmann MR, ACS Catal., 8, 4278 (2018)
- Ahmadi A, Wu T, Environ. Sci.: Water Res. Technol., 3, 534 (2017)
- Shi Y, Lu ZX, Guo LL, Wang ZD, Guo CQ, Tan HY, Yan CF, Int. J. Hydrog. Energy, 43(19), 9133 (2018)
- Han J, Choi H, Lee G, Tak Y, Yoon J, J. Electrochem. Sci. Technol., 7, 76 (2016)
- Maltanava H, Poznyak S, Starykevich M, Ivanovskaya M, Electrochim. Acta, 222, 1013 (2016)
- Liao W, Murugananthan M, Zhang Y, Phys. Chem. Chem. Phys., 17, 8877 (2015)
- Zhang X, Zhang B, Huang D, Yuan H, Wang M, Shen Y, Carbon, 80, 591 (2014)
- Yu L, Li M, Huang C, Zhang Y, He J, Zhou X, Zhu H, Mater. Lett., 216, 239 (2018)
- Koo MS, Cho K, Yoon J, Choi W, Environ. Sci. Technol., 51, 6590 (2017)