화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.36, No.11, 1799-1805, November, 2019
Free chlorine and phytic acid synergistically inactivated conidia of Aspergillus spp.
E-mail:
Chlorination has been widely used to disinfect various microbials in the environment, but its fungicidal activity is known to be limited. Here, we demonstrate that a combinatorial treatment with free chlorine and phytic acid exerted high fungicidal activities against selected species of Aspergillus. Treatment with either chlorine (7mg/l) or phytic acid (~400mg/l) without pH adjustment caused marginal inactivation of Aspergillus niger conidia within 5min. However, the combinatorial treatment with free chlorine and phytic acid inactivated 98% of A. niger conidia within 5min (CT=25.7mg/l·min). Overall fungicidal efficiency of combinatorial application was higher (~256%) than the sum of inactivation levels by individual treatment, suggesting a synergistic effect between free chlorine and phytic acid. Transmission electron microscopy observation showed that free chlorine primarily disrupted nucleo-cytosolic organs, whereas phytic acid preferentially disintegrated the cell wall and plasma membrane. The combination of both agents demolished the conidial structure of A. niger. The effects of these chemicals on the cell membrane were verified with propidium iodide staining, lipid peroxidation, and extracellular ATP secretion. Fungicidal activities of chlorine and phytic acid were further confirmed against A. parasiticus and A. flavus. Our data suggest that the mixture of free chlorine and phytic acid without any additional preparation may efficiently disinfect Aspergillus spp. through the synergistic activities of individual components.
  1. Guinea J, Pelaez T, Alcala L, Bouza E, Med. Mycol., 44, 349 (2006)
  2. Mousavi B, Hedayati MT, Hedayati N, Ilkit M, Syedmousavi S, Curr. Med. Mycol., 2, 36 (2016)
  3. Brahm H, Segal MD, N. Engl. J. Med., 360, 1870 (2009)
  4. Kumar P, Mahato DK, Kamle M, Mohanta TK, Kang SG, Front. Microbiol., 7, 2170 (2016)
  5. Zhu L, Zhang B, Dai Y, Li H, Xu W, Toxins, 9, 113 (2017)
  6. Ma X, Bibby K, Water Res., 120, 265 (2017)
  7. Nourmoradi H, Nikaeen M, Stensvold CR, Mirhendi H, Water Res., 46, 5935 (2012)
  8. Sokmen M, Tatlidil I, Breen C, Clegg F, Buruk CK, Sivlim T, Akkan S, J. Hazard. Mater., 187(1-3), 199 (2011)
  9. Piacentini KC, Savi GD, Scussel VM, Qual. Assur. Saf. Crop., 9, 383 (2017)
  10. Hassan R, El-Kadi S, Sand M, J. Adv. Biol., 2, 1 (2015)
  11. Fukuzaki S, Biocontrol. Sci., 11, 147 (2006)
  12. Pereira VJ, Marques R, Marques M, Benoliel MJ, Crespo MTB, Water Res., 47, 517 (2013)
  13. Wen G, Xu X, Huang T, Zhu H, Ma J, Water Res., 125, 132 (2017)
  14. Sisti M, Brandi G, De Santi M, Rinaldi L, Schiavano GF, J. Water Health, 10, 11 (2012)
  15. Kanzler D, Buzina W, Paulitsch A, Haas D, Platzer S, Marth E, Mascher F, Mycoses, 51, 165 (2008)
  16. Al-Gabr HM, Zheng T, Yu X, Sci. Total. Environ., 463-464, 525 (2013)
  17. Groot MN, Abee T, van Bokhorst-van de Veen H, Food Microbiol., 81, 108 (2019)
  18. Piotrowski JS, Okada H, Lu F, Li SC, Hinchman L, Ranjan A, et al., Proc. Natl. Acad. Sci. USA, 112, E1490 (2015)
  19. Pohl CH, Kock JLF, Thibane VS, Antifungal free fatty acids: A review, Formatex, Badajoz (2011).
  20. Yun J, Lee DG, FEMS Yeast Res., 16, 1 (2016)
  21. Petrovic M, Bonvin D, Hofmann H, Ebersold MM, Int. J. Mol. Sci., 19, 1 (2018)
  22. Li XC, Jacob MR, Khan SI, Ashfaq MK, Babu KS, Agarwal AK, Elsohly HN, Manly SP, Clark AM, Antimicrob. Agents Chemother., 52, 2442 (2008)
  23. Sakko M, Moore C, Novak-Frazer L, Rautemaa V, Sorsa T, Hietala P, Jarvinen A, Bowyer P, Tjaderhane L, Rautemaa R, Mycoses, 57, 214 (2014)
  24. Puvvada S, Latha P, Jayalakshmi KB, Arul SK, Int. J. Appl. Dent. Sci., 3, 19 (2017)
  25. Nassar R, Nassar M, Int. Arab. J. Antimicrob. Agents, 6, 1 (2016)
  26. Yadav AK, Sirohi P, Saraswat S, Rani M, Singh MP, Srivastava S, Singh NK, Curr. Microbiol., 75(7), 849 (2018)
  27. Hue JJ, Li L, Lee YE, Lee KN, Nam SY, Yun YW, Jeong JH, Lee SH, Yoo HS, Lee BJ, J. Food Hyg. Saf., 22, 37 (2007)
  28. Kim NH, Rhee MS, Appl. Environ. Microbiol., 82, 1040 (2016)
  29. Cho M, Chung H, Yoon J, Environ. Sci. Technol., 37, 2134 (2003)
  30. Cho M, Kim H, Cho SH, Yoon J, Ozone Sci. Eng., 25, 251 (2003)
  31. Cho M, Kim JH, Yoon J, Water Res., 40, 2911 (2006)
  32. Karnovsky MJ, J. Cell Biol., 27, A137 (1965)
  33. Dhandole LK, Seo YS, Kim SG, Kim A, Cho M, Jang JS, Photochem. Photobiol. Sci., 18, 1092 (2019)
  34. Sobsey MD, Fuji T, Shields PA, Water Sci. Technol., 20, 385 (1988)
  35. Driedger AM, Rennecker JL, Marinas BJ, Water Res., 34, 3591 (2000)
  36. Cho M, Gandhi V, Hwang TM, Lee S, Kim JH, Water Res., 45, 1063 (2011)
  37. Hawkins CL, Pattison DI, Davies MJ, Amino Acids, 25, 259 (2003)
  38. Breeuwer P, Abee T, Int. J. Food Microbiol., 55, 193 (2000)
  39. Berney M, Weilenmann HU, Egli T, Microbiology, 152, 1719 (2006)
  40. Zhou Q, Zhao Y, Dang H, Tang Y, Zhang B, J. Food Prot., 82, 826 (2019)
  41. Leive L, Biochem. Biophys. Res. Commun., 21, 290 (1965)
  42. Vaara M, Microbiol. Rev., 56, 395 (1992)
  43. Helander IM, Mattila-Sandholm T, J. Appl. Microbiol., 88(2), 213 (2000)